In the last years, there has been much attention given to the semantic gap problem in multimedia retrieval systems. Much effort has been devoted to bridge this gap by building tools for the extraction of high-level, semantics-based features from multimedia content, as low-level features are not considered useful because they deal primarily with representing the perceived content rather than the semantics of it. In this paper, we explore a different point of view by leveraging the gap between low-level and high-level features. We experiment with a recent approach for movie recommendation that extract low-level Mise-en-Scéne features from multimedia content and combine it with high-level features provided by the wisdom of the crowd. To this end, we first performed an offline performance assessment by implementing a pure content-based recommender system with three different versions of the same algorithm, respectively based on (i) conventional movie attributes, (ii) mise-en-scene features, and (iii) a hybrid method that interleaves recommendations based on movie attributes and mise-en-scene features. In a second study, we designed an empirical study involving 100 subjects and collected data regarding the quality perceived by the users. Results from both studies show that the introduction of mise-en-scéne features in conjunction with traditional movie attributes improves both offline and online quality of recommendations.
Exploring the Semantic Gap for Movie Recommendations
ELAHI, MEHDI;DELDJOO, YASHAR;CELLA, LEONARDO;CEREDA, STEFANO;CREMONESI, PAOLO
2017-01-01
Abstract
In the last years, there has been much attention given to the semantic gap problem in multimedia retrieval systems. Much effort has been devoted to bridge this gap by building tools for the extraction of high-level, semantics-based features from multimedia content, as low-level features are not considered useful because they deal primarily with representing the perceived content rather than the semantics of it. In this paper, we explore a different point of view by leveraging the gap between low-level and high-level features. We experiment with a recent approach for movie recommendation that extract low-level Mise-en-Scéne features from multimedia content and combine it with high-level features provided by the wisdom of the crowd. To this end, we first performed an offline performance assessment by implementing a pure content-based recommender system with three different versions of the same algorithm, respectively based on (i) conventional movie attributes, (ii) mise-en-scene features, and (iii) a hybrid method that interleaves recommendations based on movie attributes and mise-en-scene features. In a second study, we designed an empirical study involving 100 subjects and collected data regarding the quality perceived by the users. Results from both studies show that the introduction of mise-en-scéne features in conjunction with traditional movie attributes improves both offline and online quality of recommendations.File | Dimensione | Formato | |
---|---|---|---|
exploring-semantic-gap-final.pdf
accesso aperto
Descrizione: Autho'rs Accepted Manuscript
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.07 MB
Formato
Adobe PDF
|
3.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.