The structural performance of concrete structures reinforced using glass-fiber-reinforced-polymer (GFRP) rebars is sometime compromised by debonding failure. For better analyzing the GFRP bar-concrete bond behavior, this study presents two damage-based approaches for assessing the bond damage evolution. One is the secant modulus-based model and other is exponential damage model. Using the exponential damage approach, a simplified analytical model based on only one curve fitting parameter was developed to predict the bond stress-slip relationship. Then, a 3D finite element (FE) model was developed and both proposed damage-based approaches were implemented, to simulate the GFRP bond behavior. The FE model considers the nonlinear behavior of the concrete and the GFRP bar-concrete interface. The analytical and numerical predictions of the GFRP bar-concrete bond behavior are validated by comparing with the relevant results of an experimental program focused on quasi-static pullout tests. At the end, a parametric study was carried out to numerically assess the influence of some critical parameters on the bond behavior.

Modelling bond of GFRP rebar and concrete

REZAZADEH, MOHAMMADALI;CARVELLI, VALTER;VELJKOVIC, ANA
2017-01-01

Abstract

The structural performance of concrete structures reinforced using glass-fiber-reinforced-polymer (GFRP) rebars is sometime compromised by debonding failure. For better analyzing the GFRP bar-concrete bond behavior, this study presents two damage-based approaches for assessing the bond damage evolution. One is the secant modulus-based model and other is exponential damage model. Using the exponential damage approach, a simplified analytical model based on only one curve fitting parameter was developed to predict the bond stress-slip relationship. Then, a 3D finite element (FE) model was developed and both proposed damage-based approaches were implemented, to simulate the GFRP bond behavior. The FE model considers the nonlinear behavior of the concrete and the GFRP bar-concrete interface. The analytical and numerical predictions of the GFRP bar-concrete bond behavior are validated by comparing with the relevant results of an experimental program focused on quasi-static pullout tests. At the end, a parametric study was carried out to numerically assess the influence of some critical parameters on the bond behavior.
2017
Analytical approach; Bond behavior; Concrete; Damage model; GFRP bar; Numerical simulation; Civil and Structural Engineering; Building and Construction; Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
2017_P_Carvelli_Construction and Building Materials.pdf

Accesso riservato

Descrizione: Carvelli_Construction and Building Materials_2017
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1032079
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 29
social impact