The ACM Recommender Systems Challenge 20171 focused on the problem of job recommendations: given a new job advertisement, the goal was to identify those users who are both (a) interested in getting notified about the job advertisement, and (b) appropriate candidates for the given job. Participating teams had to balance between user interests and requirements for the given job as well as dealing with the cold-start situation. For the first time in the history of the conference, the RecSys challenge offered an online evaluation: teams first had to compete as part of a traditional offline evaluation and the top 25 teams were then invited to evaluate their algorithms in an online setting, where they could submit recommendations to real users. Overall, 262 teams registered for the challenge, 103 teams actively participated and submitted together more than 6100 solutions as part of the offline evaluation. Finally, 18 teams participated and rolled out recommendations to more than 900,000 users on XING2.
RecSys Challenge 2017: Offline and Online Evaluation
DELDJOO, YASHAR;ELAHI, MEHDI;
2017-01-01
Abstract
The ACM Recommender Systems Challenge 20171 focused on the problem of job recommendations: given a new job advertisement, the goal was to identify those users who are both (a) interested in getting notified about the job advertisement, and (b) appropriate candidates for the given job. Participating teams had to balance between user interests and requirements for the given job as well as dealing with the cold-start situation. For the first time in the history of the conference, the RecSys challenge offered an online evaluation: teams first had to compete as part of a traditional offline evaluation and the top 25 teams were then invited to evaluate their algorithms in an online setting, where they could submit recommendations to real users. Overall, 262 teams registered for the challenge, 103 teams actively participated and submitted together more than 6100 solutions as part of the offline evaluation. Finally, 18 teams participated and rolled out recommendations to more than 900,000 users on XING2.File | Dimensione | Formato | |
---|---|---|---|
p372-abel.pdf
Accesso riservato
Descrizione: The published paper in ACM digital library
:
Publisher’s version
Dimensione
781.93 kB
Formato
Adobe PDF
|
781.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.