This paper focuses on the mechanical behaviour of granular systems under shearing, unsteady conditions. The results of numerical simulations of time evolving, homogeneous, shear flows of an assembly of frictional spheres, under constant volume conditions are illustrated. Simulations have been performed considering three volume fractions corresponding to fluid, solid and near-to-critical conditions at steady state. The three systems follow very different evolutionary paths, in terms of pressure, coordination number and stress ratio. Fluid-like and solid-like systems exhibit large and small fluctuations, respectively, in those quantities. A critical value of the coordination number seems to govern the transition from fluid to solid.

Fluid-solid transition in unsteady shearing flows

VESCOVI, DALILA;BERZI, DIEGO;DI PRISCO, CLAUDIO GIULIO
2017-01-01

Abstract

This paper focuses on the mechanical behaviour of granular systems under shearing, unsteady conditions. The results of numerical simulations of time evolving, homogeneous, shear flows of an assembly of frictional spheres, under constant volume conditions are illustrated. Simulations have been performed considering three volume fractions corresponding to fluid, solid and near-to-critical conditions at steady state. The three systems follow very different evolutionary paths, in terms of pressure, coordination number and stress ratio. Fluid-like and solid-like systems exhibit large and small fluctuations, respectively, in those quantities. A critical value of the coordination number seems to govern the transition from fluid to solid.
2017
EPJ Web of Conferences
Physics and Astronomy (all)
File in questo prodotto:
File Dimensione Formato  
epjconf162390.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 690.22 kB
Formato Adobe PDF
690.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1031773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact