A self-healing sulfur vulcanized natural rubber (NR) is here reported using the common ingredients in a traditional NR formulation. The dynamic character of the di- and polysulfide bonds naturally present in covalently cross-linked rubbers was found to be responsible for the healing ability and the full recovery of mechanical properties at moderate temperatures provided the material was employed in a nonfully cured starting state. Results show that a compromise between mechanical performance and healing capability can be reached by tailoring the amount of sulfur, the cross-linking density, and the disulfide/polysulfide ratio. The healing efficiency was found to depend on the postcuring storage time, the time between damage creation and re-establishment of mechanical contact, and the actual healing time. Furthermore, a dedicated electron spin resonance (ESR) test allowed establishing the underlying healing principle based on temperature-induced free sulfur radicals. The main observations presented here can serve as the basis for the design and preparation of other self-healing polymers with long-term durability based on di-/polysulfide bridges and other reversible moieties.

Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio

GRANDE, ANTONIO MATTIA;
2016-01-01

Abstract

A self-healing sulfur vulcanized natural rubber (NR) is here reported using the common ingredients in a traditional NR formulation. The dynamic character of the di- and polysulfide bonds naturally present in covalently cross-linked rubbers was found to be responsible for the healing ability and the full recovery of mechanical properties at moderate temperatures provided the material was employed in a nonfully cured starting state. Results show that a compromise between mechanical performance and healing capability can be reached by tailoring the amount of sulfur, the cross-linking density, and the disulfide/polysulfide ratio. The healing efficiency was found to depend on the postcuring storage time, the time between damage creation and re-establishment of mechanical contact, and the actual healing time. Furthermore, a dedicated electron spin resonance (ESR) test allowed establishing the underlying healing principle based on temperature-induced free sulfur radicals. The main observations presented here can serve as the basis for the design and preparation of other self-healing polymers with long-term durability based on di-/polysulfide bridges and other reversible moieties.
2016
Degree of curing; Disulfides; Elastomer; Electron spin resonance; Polysulfides; Self-healing; Time dependence; Vulcanized natural rubber; Chemistry (all); Environmental Chemistry; Chemical Engineering (all); Renewable Energy, Sustainability and the Environment
File in questo prodotto:
File Dimensione Formato  
HERNM02-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri
HERNM_OA_02-16.pdf

Open Access dal 08/09/2017

Descrizione: Paper Open Access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1031690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 184
  • ???jsp.display-item.citation.isi??? 163
social impact