Serious games can be used to push consumers of common-pool resources toward socially responsible consumption patterns. However, gamified interactions can result in privacy leaks and potential misuses of player-provided data. In the Smart Grid ecosystem, a smart metering framework providing some basic cryptographic primitives can enable the implementation of serious games in a privacy-friendly manner. This paper presents a smart metering architecture in which the users have access to their own high-frequency data and can use them as the input data to a multi-party secure protocol. Authenticity and correctness of the data are guaranteed by the usage of a public blockchain. The framework enables a gaming platform to administer a set of team game activities aimed at promoting a more sustainable usage of energy and water. We discuss and assess the performance of a protocol based on Shamir secret sharing scheme, which enables the members of the teams to calculate their overall consumption and to compare it with those of other teams without disclosing individual energy usage data. Additionally, the protocol impedes that the game platform learns the meter readings of the players (either individual or aggregated) and their challenge objectives.

A privacy-friendly gaming framework in smart electricity and water grids

ROTTONDI, CRISTINA EMMA MARGHERITA;VERTICALE, GIACOMO
2017-01-01

Abstract

Serious games can be used to push consumers of common-pool resources toward socially responsible consumption patterns. However, gamified interactions can result in privacy leaks and potential misuses of player-provided data. In the Smart Grid ecosystem, a smart metering framework providing some basic cryptographic primitives can enable the implementation of serious games in a privacy-friendly manner. This paper presents a smart metering architecture in which the users have access to their own high-frequency data and can use them as the input data to a multi-party secure protocol. Authenticity and correctness of the data are guaranteed by the usage of a public blockchain. The framework enables a gaming platform to administer a set of team game activities aimed at promoting a more sustainable usage of energy and water. We discuss and assess the performance of a protocol based on Shamir secret sharing scheme, which enables the members of the teams to calculate their overall consumption and to compare it with those of other teams without disclosing individual energy usage data. Additionally, the protocol impedes that the game platform learns the meter readings of the players (either individual or aggregated) and their challenge objectives.
2017
Energy conservation; Gamification; Privacy; Serious games; Smart grids; Water conservation; Computer Science (all); Materials Science (all); Engineering (all)
File in questo prodotto:
File Dimensione Formato  
ACCESS2727552.pdf

accesso aperto

Descrizione: manuscript
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1031569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 31
social impact