To tackle the limits of the literature investigating biofeedback training in children with secondary dystonia, the current study employs a wearable and silent EMG-based biofeedback device that aims at improving control over the impaired muscle by providing the patient with a vibration proportional to muscle activation. The device is tested on two children with secondary dystonia due to dyskinetic cerebral palsy in a 5-day training protocol during the execution of a figure-eight writing task. Data are compared with 5-day training with no intervention. Results show a positive effect of EMG-based biofeedback on the writing outcome. Indeed, for both subjects, the accuracy error of the figure-eight trace decreases with biofeedback training, while it does not present any significant change when children practice without the device. The promising results, together with the potential long-term use of the EMG-based vibrotactile biofeedback device, address the scarcity of noninvasive therapeutic interventions in the rehabilitation of childhood dystonia.
EMG-based vibro-tactile biofeedback improves motor control in children with secondary dystonia: Two case reports
LUNARDINI, FRANCESCA;CESAREO, AMBRA;BIFFI, EMILIA;CASELLATO, CLAUDIA;PEDROCCHI, ALESSANDRA LAURA GIULIA;
2016-01-01
Abstract
To tackle the limits of the literature investigating biofeedback training in children with secondary dystonia, the current study employs a wearable and silent EMG-based biofeedback device that aims at improving control over the impaired muscle by providing the patient with a vibration proportional to muscle activation. The device is tested on two children with secondary dystonia due to dyskinetic cerebral palsy in a 5-day training protocol during the execution of a figure-eight writing task. Data are compared with 5-day training with no intervention. Results show a positive effect of EMG-based biofeedback on the writing outcome. Indeed, for both subjects, the accuracy error of the figure-eight trace decreases with biofeedback training, while it does not present any significant change when children practice without the device. The promising results, together with the potential long-term use of the EMG-based vibrotactile biofeedback device, address the scarcity of noninvasive therapeutic interventions in the rehabilitation of childhood dystonia.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.