Binder and effector molecules that allow studying and manipulating epigenetic processes are of biological relevance and pose severe technical challenges. We report the first example of a synthetic receptor able to recognize mono-methylated lysines in a histone H3 tail peptide, which has relevant functions in epigenetic regulation. Recognition is robust and specific regardless of the position and the number of mono-methylated lysines along the polypeptide chain. The peptide is first captured in solution by a tetraphosphonate cavitand (Tiiii) that selectively binds its Lys-NMe+ moieties. Separation from solution and detection of the peptide-Tiiii complexes is then enabled in one single step by an all dielectric SiO2-TiO2 core-shell resonator (T-rex), which captures the complex and operates fully reproducible signal transduction by non-plasmonic surface enhanced Raman scattering (SERS) without degrading the complex. The realized abiotic probe is able to distinguish multiple mono-methylated peptides from the single mono-methylated ones.

Probing lysine mono-methylation in histone H3 tail peptides with an abiotic receptor coupled to a non-plasmonic resonator

CANDIANI, GABRIELE;
2017-01-01

Abstract

Binder and effector molecules that allow studying and manipulating epigenetic processes are of biological relevance and pose severe technical challenges. We report the first example of a synthetic receptor able to recognize mono-methylated lysines in a histone H3 tail peptide, which has relevant functions in epigenetic regulation. Recognition is robust and specific regardless of the position and the number of mono-methylated lysines along the polypeptide chain. The peptide is first captured in solution by a tetraphosphonate cavitand (Tiiii) that selectively binds its Lys-NMe+ moieties. Separation from solution and detection of the peptide-Tiiii complexes is then enabled in one single step by an all dielectric SiO2-TiO2 core-shell resonator (T-rex), which captures the complex and operates fully reproducible signal transduction by non-plasmonic surface enhanced Raman scattering (SERS) without degrading the complex. The realized abiotic probe is able to distinguish multiple mono-methylated peptides from the single mono-methylated ones.
2017
Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
c7nr02491f.pdf

Accesso riservato

Descrizione: Papaer
: Publisher’s version
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1031029
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact