We consider a three-state continuous-time semi-Markov process with Weibull-distributed transition times to model the degradation mechanism of an industrial equipment. To build this model, an original combination of techniques is proposed for building a semi-Markov degradation model based on expert knowledge and few field data within the Bayesian statistical framework. The issues addressed are: i) the prior elicitation of the model parameters values from experts, avoiding possible information commitment; ii) the development of a Markov-Chain Monte Carlo algorithm for sampling from the posterior distribution; iii) the posterior inference of the model parameters values and, on this basis, the estimation of the time-dependent state probabilities and the prediction of the equipment remaining useful life. The developed Bayesian model offers the possibility of updating the system reliability estimation every time a new evidence is gathered. The application of the modeling framework is illustrated by way of a real industrial case study concerning the degradation of diaphragms installed in a production line of a biopharmaceutical industry.
Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components
COMPARE, MICHELE;BARALDI, PIERO;ZIO, ENRICO;
2017-01-01
Abstract
We consider a three-state continuous-time semi-Markov process with Weibull-distributed transition times to model the degradation mechanism of an industrial equipment. To build this model, an original combination of techniques is proposed for building a semi-Markov degradation model based on expert knowledge and few field data within the Bayesian statistical framework. The issues addressed are: i) the prior elicitation of the model parameters values from experts, avoiding possible information commitment; ii) the development of a Markov-Chain Monte Carlo algorithm for sampling from the posterior distribution; iii) the posterior inference of the model parameters values and, on this basis, the estimation of the time-dependent state probabilities and the prediction of the equipment remaining useful life. The developed Bayesian model offers the possibility of updating the system reliability estimation every time a new evidence is gathered. The application of the modeling framework is illustrated by way of a real industrial case study concerning the degradation of diaphragms installed in a production line of a biopharmaceutical industry.File | Dimensione | Formato | |
---|---|---|---|
ARTICLE_1_review_4.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.