We consider a three-state continuous-time semi-Markov process with Weibull-distributed transition times to model the degradation mechanism of an industrial equipment. To build this model, an original combination of techniques is proposed for building a semi-Markov degradation model based on expert knowledge and few field data within the Bayesian statistical framework. The issues addressed are: i) the prior elicitation of the model parameters values from experts, avoiding possible information commitment; ii) the development of a Markov-Chain Monte Carlo algorithm for sampling from the posterior distribution; iii) the posterior inference of the model parameters values and, on this basis, the estimation of the time-dependent state probabilities and the prediction of the equipment remaining useful life. The developed Bayesian model offers the possibility of updating the system reliability estimation every time a new evidence is gathered. The application of the modeling framework is illustrated by way of a real industrial case study concerning the degradation of diaphragms installed in a production line of a biopharmaceutical industry.

Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components

COMPARE, MICHELE;BARALDI, PIERO;ZIO, ENRICO;
2017-01-01

Abstract

We consider a three-state continuous-time semi-Markov process with Weibull-distributed transition times to model the degradation mechanism of an industrial equipment. To build this model, an original combination of techniques is proposed for building a semi-Markov degradation model based on expert knowledge and few field data within the Bayesian statistical framework. The issues addressed are: i) the prior elicitation of the model parameters values from experts, avoiding possible information commitment; ii) the development of a Markov-Chain Monte Carlo algorithm for sampling from the posterior distribution; iii) the posterior inference of the model parameters values and, on this basis, the estimation of the time-dependent state probabilities and the prediction of the equipment remaining useful life. The developed Bayesian model offers the possibility of updating the system reliability estimation every time a new evidence is gathered. The application of the modeling framework is illustrated by way of a real industrial case study concerning the degradation of diaphragms installed in a production line of a biopharmaceutical industry.
2017
Bayesian inference; Maintenance; MCMC algorithms; Multi-state degradation modeling; Remaining useful life; Weibull distribution; Safety, Risk, Reliability and Quality; Industrial and Manufacturing Engineering; Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
ARTICLE_1_review_4.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1030634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact