Rubber isolators are used widely in constructions which require a vibration or seismic isolation. It consists of rubber layers and reinforcements that can be steel or fiber lamina. The fiber reinforced isolator results in a lower cost of production and application than that of steel. Using fiber reinforced isolator allows us to make an unbonded model of rubber bearing. This model leads to a smaller horizontal stiffness and larger displacement of isolators. Researchers consider the Unbonded Fiber Reinforced Elastomeric Isolator (U-FREI) as a low-cost form of rubber bearings. U-FREIs are suitable to isolate seismically a masonry building, which is a common type of housing in developing countries. In this work, we present a finite element model (FEM) to predict the behavior of the U-FREIs undergoing moderate deformations. We adopt a Yeoh hyperelasticity model which is available in the standard package of Abaqus FE software and estimate its coefficients through the available experimental data. Then, we apply tha isolation system onto masonry housing with some simplified methods. We also observe the horizontal behaviors of U-FREIs under different vertical loads and consider a critical condition when the isolators start to be unstable. In parallel, we perform an analytical model to predict the shear behavior and the deformation limit of isolators. Finally, the results show that the analytical model is sufficiently accurate compared to the FE analyses.

A low cost rubber seismic isolation system for new masonry residential buildings in developing countries

HABIEB, AHMAD BASSHOFI;MILANI, GABRIELE;
2017-01-01

Abstract

Rubber isolators are used widely in constructions which require a vibration or seismic isolation. It consists of rubber layers and reinforcements that can be steel or fiber lamina. The fiber reinforced isolator results in a lower cost of production and application than that of steel. Using fiber reinforced isolator allows us to make an unbonded model of rubber bearing. This model leads to a smaller horizontal stiffness and larger displacement of isolators. Researchers consider the Unbonded Fiber Reinforced Elastomeric Isolator (U-FREI) as a low-cost form of rubber bearings. U-FREIs are suitable to isolate seismically a masonry building, which is a common type of housing in developing countries. In this work, we present a finite element model (FEM) to predict the behavior of the U-FREIs undergoing moderate deformations. We adopt a Yeoh hyperelasticity model which is available in the standard package of Abaqus FE software and estimate its coefficients through the available experimental data. Then, we apply tha isolation system onto masonry housing with some simplified methods. We also observe the horizontal behaviors of U-FREIs under different vertical loads and consider a critical condition when the isolators start to be unstable. In parallel, we perform an analytical model to predict the shear behavior and the deformation limit of isolators. Finally, the results show that the analytical model is sufficiently accurate compared to the FE analyses.
2017
The AIP Conference Proceedings of ICCMSE 2017, 13TH INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING
9780735415966
File in questo prodotto:
File Dimensione Formato  
Conference paper-Greece ICCMSE 2017.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 343.45 kB
Formato Adobe PDF
343.45 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1030412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact