This work aims at investigating the impact of axial gap variation on aerodynamic performance of a high-pressure steam turbine stage. Numerical and experimental campaigns were conducted on a 1.5-stage of a reaction steam turbine. This low speed test rig was designed and operated in different operating conditions. Two different configurations were studied in which blades axial gap was varied in a range from 40% to 95% of the blade axial chord. Numerical analyses were carried out by means of three-dimensional, viscous, unsteady simulations, adopting measured inlet/outlet boundary conditions. Two sets of measurements were performed: steady measurements, from one hand, for global performance estimation of the whole turbine, such as efficiency, mass flow, and stage work; steady and unsteady measurements, on the other hand, were performed downstream of rotor row, in order to characterize the flow structures in this region. The fidelity of computational setup was proven by comparing numerical results to measurements. Main performance curves and spanwise distributions have shown a good agreement in terms of both shape of curves/distributions and absolute values. Moreover, the comparison of two-dimensional maps downstream of rotor row has shown similar structures of the flow field. Finally, a comprehensive study of the axial gap effect on stage aerodynamic performance was carried out for four blade spacings (10%, 25%, 40%, and 95% of S1 axial chord) and five aspect ratios (1.0, 1.6, 3, 4, and 5). The results pointed out how unsteady interaction between blade rows affects stage operation, in terms of pressure and flow angle distributions, as well as of secondary flows development. The combined effect of these aspects in determining the stage efficiency is investigated and discussed in detail.

Numerical and Experimental Investigation of Axial Gap Variation in High-Pressure Steam Turbine Stages

PARADISO, BERARDO;GATTI, GIACOMO
2017-01-01

Abstract

This work aims at investigating the impact of axial gap variation on aerodynamic performance of a high-pressure steam turbine stage. Numerical and experimental campaigns were conducted on a 1.5-stage of a reaction steam turbine. This low speed test rig was designed and operated in different operating conditions. Two different configurations were studied in which blades axial gap was varied in a range from 40% to 95% of the blade axial chord. Numerical analyses were carried out by means of three-dimensional, viscous, unsteady simulations, adopting measured inlet/outlet boundary conditions. Two sets of measurements were performed: steady measurements, from one hand, for global performance estimation of the whole turbine, such as efficiency, mass flow, and stage work; steady and unsteady measurements, on the other hand, were performed downstream of rotor row, in order to characterize the flow structures in this region. The fidelity of computational setup was proven by comparing numerical results to measurements. Main performance curves and spanwise distributions have shown a good agreement in terms of both shape of curves/distributions and absolute values. Moreover, the comparison of two-dimensional maps downstream of rotor row has shown similar structures of the flow field. Finally, a comprehensive study of the axial gap effect on stage aerodynamic performance was carried out for four blade spacings (10%, 25%, 40%, and 95% of S1 axial chord) and five aspect ratios (1.0, 1.6, 3, 4, and 5). The results pointed out how unsteady interaction between blade rows affects stage operation, in terms of pressure and flow angle distributions, as well as of secondary flows development. The combined effect of these aspects in determining the stage efficiency is investigated and discussed in detail.
2017
Turbine, performance, axial gap, CFD, experiments
File in questo prodotto:
File Dimensione Formato  
gtp_139_05_052603.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri
11311-1030399 Paradiso.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1030399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact