The usual ways to measure the aerodynamic forcing function are complex and expensive. The aim of this work is to evaluate the forces acting on the blades using a relatively simpler experimental methodology based on a time-resolved pressure measurement at the rotor discharge. Upstream of the rotor, a steady three holes probe (3HP) has been used. The postprocessing procedures are described in detail, including the application of a phase-locked average and of an extension algorithm with phase-lag. The algorithm for the computation of the force components is presented, along with the underlying assumptions. In order to interpret the results, a preliminary description of the flowfield, both upstream and downstream of the rotor, is provided. This gives an insight of the most relevant features that affect the computation of the forces. Finally, the analysis of the results is presented. These are first described and then compared with overall section-average results (torque-sensor), and with the results from 3D unsteady simulations (integral of pressure over the blade surface) in order to assess the accuracy of the method. Both the experimental and the numerical results are also compared for two different operating conditions with increasing stage load.

An Experimental Study of the Aerodynamic Forcing Function in a 1.5 Steam Turbine Stage

GATTI, GIACOMO;GAETANI, PAOLO;PARADISO, BERARDO;DOSSENA, VINCENZO;
2017-01-01

Abstract

The usual ways to measure the aerodynamic forcing function are complex and expensive. The aim of this work is to evaluate the forces acting on the blades using a relatively simpler experimental methodology based on a time-resolved pressure measurement at the rotor discharge. Upstream of the rotor, a steady three holes probe (3HP) has been used. The postprocessing procedures are described in detail, including the application of a phase-locked average and of an extension algorithm with phase-lag. The algorithm for the computation of the force components is presented, along with the underlying assumptions. In order to interpret the results, a preliminary description of the flowfield, both upstream and downstream of the rotor, is provided. This gives an insight of the most relevant features that affect the computation of the forces. Finally, the analysis of the results is presented. These are first described and then compared with overall section-average results (torque-sensor), and with the results from 3D unsteady simulations (integral of pressure over the blade surface) in order to assess the accuracy of the method. Both the experimental and the numerical results are also compared for two different operating conditions with increasing stage load.
2017
turbomachinery, unsteady flow, forcing function
File in questo prodotto:
File Dimensione Formato  
gtp_139_05_052503.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1030398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact