Electrical measurements of carbon nanotube multiscale GFRPs have been carried out for the monitoring of low velocity impact dynamics. To achieve that purpose, several plates have been fed by a power supply and a high frequency acquisition system has been used. Electrical measurements show that there is an initial decrease of electrical resistance due to plate compression, followed by an increase due to tunneling effect of carbon nanotubes. Finally, the effect of mechanical rebound is correlated to drop rise cycles of the electrical resistance. The sensitivity of the measured signals is also correlated with the impact energy and the electrodes disposition. Thus, the proposed method proves the validity and applicability of carbon nanotubes to characterize the low-velocity impact dynamics of a composite laminate.
Monitoring of impact dynamics on carbon nanotube multiscale glass fiber composites by means of electrical measurements
SBARUFATTI, CLAUDIO;SCACCABAROZZI, DIEGO;CINQUEMANI, SIMONE;
2017-01-01
Abstract
Electrical measurements of carbon nanotube multiscale GFRPs have been carried out for the monitoring of low velocity impact dynamics. To achieve that purpose, several plates have been fed by a power supply and a high frequency acquisition system has been used. Electrical measurements show that there is an initial decrease of electrical resistance due to plate compression, followed by an increase due to tunneling effect of carbon nanotubes. Finally, the effect of mechanical rebound is correlated to drop rise cycles of the electrical resistance. The sensitivity of the measured signals is also correlated with the impact energy and the electrodes disposition. Thus, the proposed method proves the validity and applicability of carbon nanotubes to characterize the low-velocity impact dynamics of a composite laminate.File | Dimensione | Formato | |
---|---|---|---|
papero up2.pdf
Accesso riservato
:
Pre-Print (o Pre-Refereeing)
Dimensione
5.51 MB
Formato
Adobe PDF
|
5.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.