The quantum efficiency (QE) of Cu(111) is measured for different impinging light angles with photon energies just above the work function. We observe that the vectorial photoelectric effect, an enhancement of the QE due to illumination with light with an electric vector perpendicular to the sample surface, is stronger in the more surface sensitive regime. This can be explained by a contribution to photoemission due to the variation in the electromagnetic potential at the surface. The contributions of bulk and surface electrons can then be determined. © 2008 American Institute of Physics.

Surface and bulk contribution to Cu(111) quantum efficiency

DAL CONTE, STEFANO;
2008-01-01

Abstract

The quantum efficiency (QE) of Cu(111) is measured for different impinging light angles with photon energies just above the work function. We observe that the vectorial photoelectric effect, an enhancement of the QE due to illumination with light with an electric vector perpendicular to the sample surface, is stronger in the more surface sensitive regime. This can be explained by a contribution to photoemission due to the variation in the electromagnetic potential at the surface. The contributions of bulk and surface electrons can then be determined. © 2008 American Institute of Physics.
2008
Physics and Astronomy (miscellaneous)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1029686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact