Exploiting human motion for the purpose of energy harvesting has been a popular idea for some time. Many of the approaches proposed can be uncomfortable or they impose a significant burden on the person's gait. In the current paper a hardware in-the-loop simulator of an energy harvesting backpack is employed in order to investigate the effect of a suspended-load backpack on the human gait. The idea is based on the energy produced by a suspended-load which moves vertically on a backpack while a person walks. The energy created from such a linear system can be maximised when it resonates with the walking frequency of the person. However, such a configuration can also cause great forces to be applied on the back of the user. The system which is presented here consists of a mass attached on a rucksack, which is controlled by a motor in order to simulate the suspended-load backpack. The advantage of this setup is the ability to test different settings, regarding the spring stiffness or the damping coefficient, of the backpack harvester, and study their effect on the energy harvesting potential, as well as on the human gait. The present contribution describes the preliminary results and analysis of the testing of the system with the help of nine male volunteers who carried it on a treadmill.

A short investigation of the effect of an energy harvesting backpack on the human gait

RACIC, VITOMIR;
2012-01-01

Abstract

Exploiting human motion for the purpose of energy harvesting has been a popular idea for some time. Many of the approaches proposed can be uncomfortable or they impose a significant burden on the person's gait. In the current paper a hardware in-the-loop simulator of an energy harvesting backpack is employed in order to investigate the effect of a suspended-load backpack on the human gait. The idea is based on the energy produced by a suspended-load which moves vertically on a backpack while a person walks. The energy created from such a linear system can be maximised when it resonates with the walking frequency of the person. However, such a configuration can also cause great forces to be applied on the back of the user. The system which is presented here consists of a mass attached on a rucksack, which is controlled by a motor in order to simulate the suspended-load backpack. The advantage of this setup is the ability to test different settings, regarding the spring stiffness or the damping coefficient, of the backpack harvester, and study their effect on the energy harvesting potential, as well as on the human gait. The present contribution describes the preliminary results and analysis of the testing of the system with the help of nine male volunteers who carried it on a treadmill.
2012
Proceedings of SPIE - The International Society for Optical Engineering
9780819489982
Effect on gait; Energy harvesting; Suspended-load backpack; Applied Mathematics; Computer Science Applications; Computer Vision and Pattern Recognition; Electrical and Electronic Engineering; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
File in questo prodotto:
File Dimensione Formato  
Papatheou Racic (2012) SPIE.pdf

Accesso riservato

: Publisher’s version
Dimensione 992.42 kB
Formato Adobe PDF
992.42 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1029576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact