Discretization methods such as finite differences or finite elements were usually employed to provide high fidelity solution approximations for reduced order modeling of parameterized partial differential equations. In this paper, a novel discretization technique-Isogeometric Analysis (IGA) is used in combination with proper orthogonal decomposition (POD) for model order reduction of the time parameterized acoustic wave equations. We propose a new fully discrete IGA-Newmark-POD approximation and we analyze the associated numerical error, which features three components due to spatial discretization by IGA, time discretization with the Newmark scheme, and modes truncation by POD. We prove stability and convergence. Numerical examples are presented to show the effectiveness and accuracy of IGA-based POD techniques for the model order reduction of the acoustic wave equation.

Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation

DEDE', LUCA;QUARTERONI, ALFIO MARIA
2017-01-01

Abstract

Discretization methods such as finite differences or finite elements were usually employed to provide high fidelity solution approximations for reduced order modeling of parameterized partial differential equations. In this paper, a novel discretization technique-Isogeometric Analysis (IGA) is used in combination with proper orthogonal decomposition (POD) for model order reduction of the time parameterized acoustic wave equations. We propose a new fully discrete IGA-Newmark-POD approximation and we analyze the associated numerical error, which features three components due to spatial discretization by IGA, time discretization with the Newmark scheme, and modes truncation by POD. We prove stability and convergence. Numerical examples are presented to show the effectiveness and accuracy of IGA-based POD techniques for the model order reduction of the acoustic wave equation.
2017
Acoustic wave equation; Isogeometric analysis; Proper orthogonal decomposition; Reduced order modeling; Analysis; Numerical Analysis; Modeling and Simulation; Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1029306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact