The volume of data, one of the five “V” characteristics of Big Data, grows at a rate that is much higher than the increase of ability of the existing systems to manage it within an acceptable time. Several technologies have been developed to approach this scalability issue. For instance, MapReduce has been introduced to cope with the problem of processing a huge amount of data, by splitting the computation into a set of tasks that are concurrently executed. The savings of even a marginal time in the processing of all the tasks of a set can bring valuable benefits to the execution of the whole application and to the management costs of the entire data center. To this end, we propose a technique to minimize the global processing time of a set of tasks, having different service requirements, concurrently executed on two or more heterogeneous systems. The validity of the proposed technique is demonstrated using a multiformalism model that consists of a combination of Queueing Networks and Petri Nets. Application of this technique to an Apache Hive case-study shows that the described allocation policy can lead to performance gains on both total execution time and energy consumption.

Modeling multiclass task-based applications on heterogeneous distributed environments

PINCIROLI, RICCARDO;GRIBAUDO, MARCO;SERAZZI, GIUSEPPE
2017

Abstract

The volume of data, one of the five “V” characteristics of Big Data, grows at a rate that is much higher than the increase of ability of the existing systems to manage it within an acceptable time. Several technologies have been developed to approach this scalability issue. For instance, MapReduce has been introduced to cope with the problem of processing a huge amount of data, by splitting the computation into a set of tasks that are concurrently executed. The savings of even a marginal time in the processing of all the tasks of a set can bring valuable benefits to the execution of the whole application and to the management costs of the entire data center. To this end, we propose a technique to minimize the global processing time of a set of tasks, having different service requirements, concurrently executed on two or more heterogeneous systems. The validity of the proposed technique is demonstrated using a multiformalism model that consists of a combination of Queueing Networks and Petri Nets. Application of this technique to an Apache Hive case-study shows that the described allocation policy can lead to performance gains on both total execution time and energy consumption.
ANALYTICAL AND STOCHASTIC MODELLING TECHNIQUES AND APPLICATIONS, ASMTA 2017
9783319614274
Energy efficiency; MapReduce; Multiformalism models; Performance evaluation; Petri nets; Pool depletion systems; Queueing networks; Schedulers; Theoretical Computer Science; Computer Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1029274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact