In this paper, an approach for designing an adaptive fuzzy model predictive control (AFMPC) based on the Ant Colony Optimization (ACO) is studied. On-line adaptive fuzzy identification is used to identify the system parameters. These parameters are used to calculate the objective function based on predictive approach and structure of RST control. The optimization problem is solved based on an ACO algorithm, used at the optimization process in AFMPC to calculate a sequence of future RST control actions. The obtained simulation results show that proposed approach provides better results compared with Proportional Integral-Ant Colony Optimization (PI-ACO) controller and adaptive fuzzy model predictive control (AFMPC).
Fuzzy predictive controller design using ant colony optimization algorithm
KARIMI, HAMID REZA;
2014-01-01
Abstract
In this paper, an approach for designing an adaptive fuzzy model predictive control (AFMPC) based on the Ant Colony Optimization (ACO) is studied. On-line adaptive fuzzy identification is used to identify the system parameters. These parameters are used to calculate the objective function based on predictive approach and structure of RST control. The optimization problem is solved based on an ACO algorithm, used at the optimization process in AFMPC to calculate a sequence of future RST control actions. The obtained simulation results show that proposed approach provides better results compared with Proportional Integral-Ant Colony Optimization (PI-ACO) controller and adaptive fuzzy model predictive control (AFMPC).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.