Creating a mathematical model of a vehicle crash is a task which involves considerations and analysis of different areas which need to be addressed because of the mathematical complexity of a crash event representation. Therefore, to simplify the analysis and enhance the modeling process, in this work, a brief overview of different vehicle crash modeling methodologies is proposed. The acceleration of a colliding vehicle is measured in its center of gravity - this crash pulse contains detailed information about vehicle behavior throughout a collision. A virtual model of a collision scenario is established in order to provide an additional data set further used to evaluate a suggested approach. Three different approaches are discussed here: lumped parameter modeling of viscoelastic systems, data-based approach taking advantage of neural networks and autoregressive models and wavelet-based method of signal reconstruction. The comparative analysis between each method's outcomes is performed and reliability of the proposed methodologies and tools is evaluated. © 2013 Springer-Verlag London.

Investigation of vehicle crash modeling techniques: Theory and application

KARIMI, HAMID REZA;
2014-01-01

Abstract

Creating a mathematical model of a vehicle crash is a task which involves considerations and analysis of different areas which need to be addressed because of the mathematical complexity of a crash event representation. Therefore, to simplify the analysis and enhance the modeling process, in this work, a brief overview of different vehicle crash modeling methodologies is proposed. The acceleration of a colliding vehicle is measured in its center of gravity - this crash pulse contains detailed information about vehicle behavior throughout a collision. A virtual model of a collision scenario is established in order to provide an additional data set further used to evaluate a suggested approach. Three different approaches are discussed here: lumped parameter modeling of viscoelastic systems, data-based approach taking advantage of neural networks and autoregressive models and wavelet-based method of signal reconstruction. The comparative analysis between each method's outcomes is performed and reliability of the proposed methodologies and tools is evaluated. © 2013 Springer-Verlag London.
2014
Feedforward neural network; Lumped parameter models; Multiresolution analysis; Vehicle crash modeling; Control and Systems Engineering; Software; Mechanical Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Industrial and Manufacturing Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1028769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 23
social impact