Feature combination is a powerful approach to improve object classification performance. While various combination algorithms have been proposed, average combination is almost always selected as the baseline algorithm to be compared with. In previous work we have found that it is better to use only a sample of the most powerful features in average combination than using all. In this paper, we continue this work and further show that the behaviors of features in average combination can be integrated into the k-Nearest-Neighbor (kNN) framework. Based on the kNN framework, we then propose to use a selection based average combination algorithm to obtain the best classification performance from average combination. Our experiments on four diverse datasets indicate that this selection based average combination performs evidently better than the ordinary average combination, and thus serves as a better baseline. Comparing with this new and better baseline makes the claimed superiority of newly proposed combination algorithms more convincing. Furthermore, the kNN framework is helpful in understanding the underlying mechanism of feature combination and motivating novel feature combination algorithms. © 2014 Jian Hou et al.

Exploring the best classification from average feature combination

KARIMI, HAMID REZA
2014-01-01

Abstract

Feature combination is a powerful approach to improve object classification performance. While various combination algorithms have been proposed, average combination is almost always selected as the baseline algorithm to be compared with. In previous work we have found that it is better to use only a sample of the most powerful features in average combination than using all. In this paper, we continue this work and further show that the behaviors of features in average combination can be integrated into the k-Nearest-Neighbor (kNN) framework. Based on the kNN framework, we then propose to use a selection based average combination algorithm to obtain the best classification performance from average combination. Our experiments on four diverse datasets indicate that this selection based average combination performs evidently better than the ordinary average combination, and thus serves as a better baseline. Comparing with this new and better baseline makes the claimed superiority of newly proposed combination algorithms more convincing. Furthermore, the kNN framework is helpful in understanding the underlying mechanism of feature combination and motivating novel feature combination algorithms. © 2014 Jian Hou et al.
2014
Analysis; Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
11311-1028743_Karimi.pdf

accesso aperto

: Publisher’s version
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1028743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact