Compared with fixed-bottom installation, deep water floating wind turbine has to undergo more severe structural loads due to extra degrees of freedom. Aiming for effective load reduction, this paper deals with the evaluation of a passive structural control design for a spar-type floating wind turbine, and the proposed strategy is to install a tuned mass damper (TMD) into the spar platform. Firstly, a mathematical model for wind turbine surge-heave-pitch motion is established based on the D'Alembert's principle of inertial forces. Then, parameter estimation is performed by comparing the outputs from the proposed model and the state-of-the-art simulator. Further, different optimization methods are adopted to optimize TMD parameters when considering different performance indices. Finally, high fidelity nonlinear simulations with previous optimized TMD designs are conducted under different wind and wave conditions. Simulation results demonstrate both the effectiveness and limitation of different TMD parameter choices, providing parametric analysis and design basis for future improvement on floating wind turbine load reduction with structural control methods. © 2014 Elsevier Ltd.

Modelling and optimization of a passive structural control design for a spar-type floating wind turbine

KARIMI, HAMID REZA;
2014-01-01

Abstract

Compared with fixed-bottom installation, deep water floating wind turbine has to undergo more severe structural loads due to extra degrees of freedom. Aiming for effective load reduction, this paper deals with the evaluation of a passive structural control design for a spar-type floating wind turbine, and the proposed strategy is to install a tuned mass damper (TMD) into the spar platform. Firstly, a mathematical model for wind turbine surge-heave-pitch motion is established based on the D'Alembert's principle of inertial forces. Then, parameter estimation is performed by comparing the outputs from the proposed model and the state-of-the-art simulator. Further, different optimization methods are adopted to optimize TMD parameters when considering different performance indices. Finally, high fidelity nonlinear simulations with previous optimized TMD designs are conducted under different wind and wave conditions. Simulation results demonstrate both the effectiveness and limitation of different TMD parameter choices, providing parametric analysis and design basis for future improvement on floating wind turbine load reduction with structural control methods. © 2014 Elsevier Ltd.
2014
Estimation; FAST-SC; Floating wind turbine; Modelling; Optimization; Passive structural control; Spar; Civil and Structural Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1028634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 174
  • ???jsp.display-item.citation.isi??? 132
social impact