While basic Web analytics tools are widespread and provide statistics about website navigation, no approaches exist for merging such statistics with information about the Web application structure, content and semantics. Current analytics tools only analyze the user interaction at page level in terms of page views, entry and landing page, page views per visit, and so on. We show the advantages of combining Web application models with runtime navigation logs, at the purpose of deepening the understanding of users behaviour. We propose a model-driven approach that combines user interaction modeling (based on the IFML standard), full code generation of the designed application, user tracking at runtime through logging of runtime component execution and user activities, integration with page content details, generation of integrated schema-less data streams, and application of large-scale analytics and visualization tools for big data, by applying both traditional data visualization techniques and direct representation of statistics on visual models of the Web application.

A big data analysis framework for model-based web user behavior analytics

BERNASCHINA, CARLO;BRAMBILLA, MARCO;MAURI, ANDREA;UMUHOZA, ERIC
2017

Abstract

While basic Web analytics tools are widespread and provide statistics about website navigation, no approaches exist for merging such statistics with information about the Web application structure, content and semantics. Current analytics tools only analyze the user interaction at page level in terms of page views, entry and landing page, page views per visit, and so on. We show the advantages of combining Web application models with runtime navigation logs, at the purpose of deepening the understanding of users behaviour. We propose a model-driven approach that combines user interaction modeling (based on the IFML standard), full code generation of the designed application, user tracking at runtime through logging of runtime component execution and user activities, integration with page content details, generation of integrated schema-less data streams, and application of large-scale analytics and visualization tools for big data, by applying both traditional data visualization techniques and direct representation of statistics on visual models of the Web application.
Web Engineering. ICWE 2017
9783319601304
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1028037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact