This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article introduces the ideas investigated in the BCG2 project of the GreenTouch consortium. The basic concept is to separate signaling and data in the wireless access network. Transmitting the signaling information separately maintains coverage even when the whole data network is adapted to the current load situation. Such network-wide adaptation can power down base stations when no data transmission is needed and, thus, promises a tremendous increase in energy efficiency. We highlight the advantages of the separation approach and discuss technical challenges opening new research directions. Moreover, we propose two analytical models to assess the potential energy efficiency improvement of the BCG2 approach.

Beyond cellular green generation: Potential and challenges of the network separation

FILIPPINI, ILARIO;REDONDI, ALESSANDRO ENRICO CESARE;CAPONE, ANTONIO
2017-01-01

Abstract

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article introduces the ideas investigated in the BCG2 project of the GreenTouch consortium. The basic concept is to separate signaling and data in the wireless access network. Transmitting the signaling information separately maintains coverage even when the whole data network is adapted to the current load situation. Such network-wide adaptation can power down base stations when no data transmission is needed and, thus, promises a tremendous increase in energy efficiency. We highlight the advantages of the separation approach and discuss technical challenges opening new research directions. Moreover, we propose two analytical models to assess the potential energy efficiency improvement of the BCG2 approach.
2017
Computer Science Applications1707 Computer Vision and Pattern Recognition; Computer Networks and Communications
File in questo prodotto:
File Dimensione Formato  
2017_MISY_BCG.pdf

accesso aperto

: Publisher’s version
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1027916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact