A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian–Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.

An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids

RE, BARBARA;GUARDONE, ALBERTO MATTEO ATTILIO
2017-01-01

Abstract

A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian–Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.
2017
ALE scheme; Euler equations; Finite volume discretization; Mesh adaptation; Tetrahedral grid; Physics and Astronomy (miscellaneous); Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
File Dimensione Formato  
REBAR_OA_02-17.pdf

accesso aperto

Descrizione: Paper Open Access
: Publisher’s version
Dimensione 30.54 MB
Formato Adobe PDF
30.54 MB Adobe PDF Visualizza/Apri
REBAR02-17.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 30.61 MB
Formato Adobe PDF
30.61 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1026508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 13
social impact