Loss of heart rate variability (HRV) and autonomic dysfunction are associated with poor outcomes in critically ill patients. Neuronal networks comprising brainstem and hypothalamus are involved in the “flight-or-fight” response via control over the autonomic nervous system and circulation. We hypothesized that sepsis-induced inflammation in brain regions responsible for autonomic control is associated with sympathovagal imbalance and depressed contractility. Sepsis was induced by fecal slurry injection in fluid-resuscitated rats. Sham-operated animals served as controls. Echocardiography-derived peak velocity (PV) was used to separate septic animals into good (PV ≥0.93 m/s, low 72-h mortality) and bad (PV <0.93, high 72-h mortality) prognosis. Cytokine protein levels were assessed by ELISA. All experiments were performed at 24 h post-insult. Increased levels of inflammation and oxidative injury were observed in the hypothalamus (TNF-α, IL-10, nitrite and nitrate and carbonyl groups) and brainstem (IL-1, IL-6, IL-10, nitrite and nitrate and carbonyl groups) of the septic animals (p < 0.05 vs. sham), but not in the pre-frontal cortex, an area not directly implicated in control of the autonomic nervous system. Good prognosis septic animals had increased sympathetic output and increased left ventricular contractility (p < 0.05 vs. sham). There was a significant inverse correlation between high frequency power (a marker of parasympathetic outflow) and contractility (r = −0.73, p < 0.05). We found no correlation between the degree of inflammation or injury to autonomic centers and cardiovascular function. In conclusion, control of autonomic centers and cardiac function in our long-term rodent model of sepsis was related to clinical severity but not directly to the degree of inflammation.

Characterization of Brain–Heart Interactions in a Rodent Model of Sepsis

GAMBAROTTA, NICOLÒ;FERRARIO, MANUELA;
2017-01-01

Abstract

Loss of heart rate variability (HRV) and autonomic dysfunction are associated with poor outcomes in critically ill patients. Neuronal networks comprising brainstem and hypothalamus are involved in the “flight-or-fight” response via control over the autonomic nervous system and circulation. We hypothesized that sepsis-induced inflammation in brain regions responsible for autonomic control is associated with sympathovagal imbalance and depressed contractility. Sepsis was induced by fecal slurry injection in fluid-resuscitated rats. Sham-operated animals served as controls. Echocardiography-derived peak velocity (PV) was used to separate septic animals into good (PV ≥0.93 m/s, low 72-h mortality) and bad (PV <0.93, high 72-h mortality) prognosis. Cytokine protein levels were assessed by ELISA. All experiments were performed at 24 h post-insult. Increased levels of inflammation and oxidative injury were observed in the hypothalamus (TNF-α, IL-10, nitrite and nitrate and carbonyl groups) and brainstem (IL-1, IL-6, IL-10, nitrite and nitrate and carbonyl groups) of the septic animals (p < 0.05 vs. sham), but not in the pre-frontal cortex, an area not directly implicated in control of the autonomic nervous system. Good prognosis septic animals had increased sympathetic output and increased left ventricular contractility (p < 0.05 vs. sham). There was a significant inverse correlation between high frequency power (a marker of parasympathetic outflow) and contractility (r = −0.73, p < 0.05). We found no correlation between the degree of inflammation or injury to autonomic centers and cardiovascular function. In conclusion, control of autonomic centers and cardiac function in our long-term rodent model of sepsis was related to clinical severity but not directly to the degree of inflammation.
2017
Autonomic nervous system; Contractility; Encephalopathy; Heart rate variability; Inflammation; Sepsis; Cellular and Molecular Neuroscience
File in questo prodotto:
File Dimensione Formato  
11311-1025226 Ferrario.pdf

accesso aperto

: Publisher’s version
Dimensione 854.2 kB
Formato Adobe PDF
854.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1025226
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact