Electrochemical experimental evidence of facilitated electron transfer in a sub-micrometer biosensor is presented. Layer-by-layer self-assembled deposition provides the unique advantage to specifically control the thickness of the biosensors, allowing an oxygen-insensitive device with a film thickness of 70 nanometers to be obtained. The biosensor is based on a poly(allylamine) osmium redox mediator and glucose 1-oxidase. The immobilized enzyme contributes to the signal generation through the full biosensor thickness, with no loss of “active enzyme” in the outer layer of the biosensor through reaction with oxygen, as reported in the case of thick redox hydrogels. The application of the biosensor in complex matrices was approached with tests in wastewater. Encapsulation of the biosensor with Nafion® membrane ensured the protection of the enzyme molecules from the external environment, allowing the successful application of the sensor in a complex matrix.

Facilitated Electron Hopping in Nanolayer Oxygen-Insensitive Glucose Biosensor for Application in a Complex Matrix

BESTETTI, MASSIMILIANO;
2016-01-01

Abstract

Electrochemical experimental evidence of facilitated electron transfer in a sub-micrometer biosensor is presented. Layer-by-layer self-assembled deposition provides the unique advantage to specifically control the thickness of the biosensors, allowing an oxygen-insensitive device with a film thickness of 70 nanometers to be obtained. The biosensor is based on a poly(allylamine) osmium redox mediator and glucose 1-oxidase. The immobilized enzyme contributes to the signal generation through the full biosensor thickness, with no loss of “active enzyme” in the outer layer of the biosensor through reaction with oxygen, as reported in the case of thick redox hydrogels. The application of the biosensor in complex matrices was approached with tests in wastewater. Encapsulation of the biosensor with Nafion® membrane ensured the protection of the enzyme molecules from the external environment, allowing the successful application of the sensor in a complex matrix.
2016
electronhopping, nanostructures,oxygen-insensitive biosensors, redox osmium polymers, wastewater
File in questo prodotto:
File Dimensione Formato  
Grattieri_et_al-2016-ChemElectroChem.pdf

Accesso riservato

: Publisher’s version
Dimensione 691.82 kB
Formato Adobe PDF
691.82 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1024711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact