Prognostics of a specific asset based on data from a fleet of same assets, but operated in different environmental and operational conditions is an important and common problem in Prognostics and Health Management (PHM). Traditional data-driven models trained on all fleet data provide only a general degradation trend, without capturing the specificity of the degradation process of the different assets. A two-step data-driven framework is here proposed to tackle this problem. A general model is trained traditionally on all fleet data and a correction model is built to estimate the deviation of the general model outcome from the degradation process of the specific asset of interest. The proposed framework is tested on a case study concerning the failure of a pneumatic valve in a nuclear power plant. The experimental results show the effectiveness of the proposed two-step, data-driven framework.

A framework for asset prognostics from fleet data

ZIO, ENRICO
2016-01-01

Abstract

Prognostics of a specific asset based on data from a fleet of same assets, but operated in different environmental and operational conditions is an important and common problem in Prognostics and Health Management (PHM). Traditional data-driven models trained on all fleet data provide only a general degradation trend, without capturing the specificity of the degradation process of the different assets. A two-step data-driven framework is here proposed to tackle this problem. A general model is trained traditionally on all fleet data and a correction model is built to estimate the deviation of the general model outcome from the degradation process of the specific asset of interest. The proposed framework is tested on a case study concerning the failure of a pneumatic valve in a nuclear power plant. The experimental results show the effectiveness of the proposed two-step, data-driven framework.
2016
Proceedings of 2016 Prognostics and System Health Management Conference, PHM-Chengdu 2016
9781509027781
Correction model; Fleet; Fuzzy similarity analysis; General model; Prognostics; Support vector machine; Hardware and Architecture; Electrical and Electronic Engineering; Safety, Risk, Reliability and Quality
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1020927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact