The behavior of a Ni-based superalloy, Haynes 230, was investigated at macro and micro scale level by means of a Crystal Plasticity (CP) model implemented in an open source Finite Element code, Warp3D. Single Crystal and polycrystalline specimens have been experimentally characterized with Digital Image Correlation (DIC) to identify the local strain field evolution. The results of single crystal’s tensile tests were used to obtain an estimation of the constitutive model parameters. Then a polycrystalline model, reproducing a tensile test with loading/unloading steps, was created starting from the microstructural data obtained with EBSD (electron back-scatter diffraction), which allowed the identification of grains geometry and orientations. The polycrystalline simulations were used to verify the prediction of the CP model over the experiment. The results of this study show that the comparison between experiments and numerical analysis is in good agreement on both global and local scale levels.

Crystal Plasticity Simulations of Haynes 230, an Analysis of Single Crystal and Polycrystalline Experiments

LUCCARELLI, PIETRO GIOVANNI;FOLETTI, STEFANO;
2016-01-01

Abstract

The behavior of a Ni-based superalloy, Haynes 230, was investigated at macro and micro scale level by means of a Crystal Plasticity (CP) model implemented in an open source Finite Element code, Warp3D. Single Crystal and polycrystalline specimens have been experimentally characterized with Digital Image Correlation (DIC) to identify the local strain field evolution. The results of single crystal’s tensile tests were used to obtain an estimation of the constitutive model parameters. Then a polycrystalline model, reproducing a tensile test with loading/unloading steps, was created starting from the microstructural data obtained with EBSD (electron back-scatter diffraction), which allowed the identification of grains geometry and orientations. The polycrystalline simulations were used to verify the prediction of the CP model over the experiment. The results of this study show that the comparison between experiments and numerical analysis is in good agreement on both global and local scale levels.
2016
Solid State Phenomena
9783038356264
3D Finite Element Analysis, Crystal Plasticity, Nickel Based Alloy, Polycrystalline Media, Single Crystal, Warp3D
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1018790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact