In fiber reinforced concrete (FRC), fibers are added to the fresh concrete mix in order to improve the residual tensile strength, the toughness and/or durability of a concrete element. Cur- rently, structural applications remain relatively scarce as the time-dependent behavior of FRC is still poorly understood. This paper reports the first results of an experimental campaign regarding the creep of cracked polymer FRC. In the test setup, cylindrical, notched FRC specimens are considered. The concrete is reinforced with structural polymeric fibers for use in load-bearing applications. In a first step, the material is characterized according to the European Standard EN14651. Secondly, the samples are precracked to localize the creep deformations and to monitor the crack growth in time. The samples are subjected to a sustained tensile load, whereby different load levels with respect to the individual residual strength are considered. The results of the first months of creep loading will be detailed and discussed in the paper.

CREEP OF CRACKED POLYMER FIBER REINFORCED CONCRETE UNDER SUSTAINED TENSILE LOADING

DI PRISCO, MARCO;
2016-01-01

Abstract

In fiber reinforced concrete (FRC), fibers are added to the fresh concrete mix in order to improve the residual tensile strength, the toughness and/or durability of a concrete element. Cur- rently, structural applications remain relatively scarce as the time-dependent behavior of FRC is still poorly understood. This paper reports the first results of an experimental campaign regarding the creep of cracked polymer FRC. In the test setup, cylindrical, notched FRC specimens are considered. The concrete is reinforced with structural polymeric fibers for use in load-bearing applications. In a first step, the material is characterized according to the European Standard EN14651. Secondly, the samples are precracked to localize the creep deformations and to monitor the crack growth in time. The samples are subjected to a sustained tensile load, whereby different load levels with respect to the individual residual strength are considered. The results of the first months of creep loading will be detailed and discussed in the paper.
2016
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures
Creep, Fiber Reinforced Concrete, Tensile Creep, Crack Growth, Polymeric Fibers
File in questo prodotto:
File Dimensione Formato  
Rutger.pdf

accesso aperto

Descrizione: Articolo principale
: Pre-Print (o Pre-Refereeing)
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1017842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact