The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: An ideal statefeedback H∞ controller with full access to the complete state information and two static output-feedback H∞ controllers with restricted neighbouring state information. To assess the performance of the proposed controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations are conducted, using the full scale North-South El Centro 1940 seismic record as ground acceleration input. The obtained results indicate that, despite the severe information constraints, the proposed static output-feedback controllers attain a level of seismic protection that is very similar to that achieved by the ideal state-feedback controller with complete state information.

Vibration control strategy for large-scale structures with incomplete multi-Actuator system and neighbouring state information

KARIMI, HAMID REZA
2016-01-01

Abstract

The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: An ideal statefeedback H∞ controller with full access to the complete state information and two static output-feedback H∞ controllers with restricted neighbouring state information. To assess the performance of the proposed controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations are conducted, using the full scale North-South El Centro 1940 seismic record as ground acceleration input. The obtained results indicate that, despite the severe information constraints, the proposed static output-feedback controllers attain a level of seismic protection that is very similar to that achieved by the ideal state-feedback controller with complete state information.
2016
Control and Systems Engineering; Electrical and Electronic Engineering; Human-Computer Interaction; Computer Science Applications1707 Computer Vision and Pattern Recognition; Control and Optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1017802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact