This paper investigates the problem of automatic speed tracking control of an electric vehicle (EV) that is powered by a permanent-magnet synchronous motor (PMSM). A reconfiguration scheme, based on higher order sliding mode (HOSM) observer, is proposed in the event of sensor faults/failures to maintain a good control performance. The corresponding controlled motor output torque drives EVs to track the desired vehicle reference speed for providing uninterrupted vehicle safe operation. The effectiveness of the overall sensor fault-tolerant speed tracking control is highlighted when an EV is subjected to disturbances like aerodynamic load force and road roughness using high-fidelity software package CarSim. Experiments with a 26-W, three-phase PMSM are presented to demonstrate the validity of the proposed fault-detection scheme.

A Robust Observer-Based Sensor Fault-Tolerant Control for PMSM in Electric Vehicles

KARIMI, HAMID REZA;
2016-01-01

Abstract

This paper investigates the problem of automatic speed tracking control of an electric vehicle (EV) that is powered by a permanent-magnet synchronous motor (PMSM). A reconfiguration scheme, based on higher order sliding mode (HOSM) observer, is proposed in the event of sensor faults/failures to maintain a good control performance. The corresponding controlled motor output torque drives EVs to track the desired vehicle reference speed for providing uninterrupted vehicle safe operation. The effectiveness of the overall sensor fault-tolerant speed tracking control is highlighted when an EV is subjected to disturbances like aerodynamic load force and road roughness using high-fidelity software package CarSim. Experiments with a 26-W, three-phase PMSM are presented to demonstrate the validity of the proposed fault-detection scheme.
2016
Electric vehicles (EVs); fault-tolerant control (FTC); higher order sliding mode (HOSM); permanent-magnet synchronous motor (PMSM); road roughness; speed tracking control; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1017757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 342
  • ???jsp.display-item.citation.isi??? 300
social impact