Grain boundaries (GBs) govern many properties of polycrystalline materials. However, because of their structural variability, our knowledge of GB constitutive relations is still very limited. We present a novel method to characterise the complete crystallography of individual GBs non-destructively, with high-throughput, and using commercially available tools. This method combines electron diffraction, optical reflectance and numerical image analysis to determine all five crystallographic parameters of numerous GBs in samples with through-thickness grains. We demonstrate the technique by measuring the crystallographic character of about 1,000 individual GBs in aluminum in a single run. Our method enables cost- and time-effective assembly of crystallography–property databases for thousands of individual GBs. Such databases are essential for identifying GB constitutive relations and for predicting GB-related behaviours of polycrystalline solids.

A high-throughput technique for determining grain boundary character non-destructively in microstructures with through-thickness grains

VOLPI, MARCO;DIAMANTI, MARIA VITTORIA;
2016-01-01

Abstract

Grain boundaries (GBs) govern many properties of polycrystalline materials. However, because of their structural variability, our knowledge of GB constitutive relations is still very limited. We present a novel method to characterise the complete crystallography of individual GBs non-destructively, with high-throughput, and using commercially available tools. This method combines electron diffraction, optical reflectance and numerical image analysis to determine all five crystallographic parameters of numerous GBs in samples with through-thickness grains. We demonstrate the technique by measuring the crystallographic character of about 1,000 individual GBs in aluminum in a single run. Our method enables cost- and time-effective assembly of crystallography–property databases for thousands of individual GBs. Such databases are essential for identifying GB constitutive relations and for predicting GB-related behaviours of polycrystalline solids.
2016
File in questo prodotto:
File Dimensione Formato  
npjcomp2016.pdf

accesso aperto

Descrizione: Articolo NPJ
: Publisher’s version
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1015564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact