A new protocol to synthesize size-controlled Au nanoparticles (NPs) loaded onto vertically aligned anatase TiO2 nanotubes arrays (TNTAs) prepared by electrochemical anodization is reported. Ligand-free Au NPs (<10 nm) were deposited onto anatase TNTAs supports, finely tuning the Au loading by controlling the immersion time of the support into metal vapor synthesis (MVS)-derived Au-acetone solutions. The Au/TNTAs composites were characterized by electron microscopies (SEM, (S)TEM), X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectroscopy. Their photocatalytic efficiency was evaluated in toluene degradation in air under ambient conditions without thermal or chemical postsynthetic treatments. The role of Au loadings was pointed out, obtaining a three times enhancement of the pristine anatase TNTAs activity with the best sample containing 3.3 μg Au cm-2.

TiO2 Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity

DIAMANTI, MARIA VITTORIA;PEDEFERRI, MARIAPIA;
2016-01-01

Abstract

A new protocol to synthesize size-controlled Au nanoparticles (NPs) loaded onto vertically aligned anatase TiO2 nanotubes arrays (TNTAs) prepared by electrochemical anodization is reported. Ligand-free Au NPs (<10 nm) were deposited onto anatase TNTAs supports, finely tuning the Au loading by controlling the immersion time of the support into metal vapor synthesis (MVS)-derived Au-acetone solutions. The Au/TNTAs composites were characterized by electron microscopies (SEM, (S)TEM), X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectroscopy. Their photocatalytic efficiency was evaluated in toluene degradation in air under ambient conditions without thermal or chemical postsynthetic treatments. The role of Au loadings was pointed out, obtaining a three times enhancement of the pristine anatase TNTAs activity with the best sample containing 3.3 μg Au cm-2.
2016
anatase; Au nanoparticles; electrochemical anodization; metal vapor synthesis; nanotubes arrays; photocatalysis; titanium dioxide; Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
ApplMatInterf2016.pdf

Accesso riservato

Descrizione: Articolo ACS ApplMatInt
: Publisher’s version
Dimensione 3.79 MB
Formato Adobe PDF
3.79 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1015408
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact