A new protocol to synthesize size-controlled Au nanoparticles (NPs) loaded onto vertically aligned anatase TiO2 nanotubes arrays (TNTAs) prepared by electrochemical anodization is reported. Ligand-free Au NPs (<10 nm) were deposited onto anatase TNTAs supports, finely tuning the Au loading by controlling the immersion time of the support into metal vapor synthesis (MVS)-derived Au-acetone solutions. The Au/TNTAs composites were characterized by electron microscopies (SEM, (S)TEM), X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectroscopy. Their photocatalytic efficiency was evaluated in toluene degradation in air under ambient conditions without thermal or chemical postsynthetic treatments. The role of Au loadings was pointed out, obtaining a three times enhancement of the pristine anatase TNTAs activity with the best sample containing 3.3 μg Au cm-2.
TiO2 Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity
DIAMANTI, MARIA VITTORIA;PEDEFERRI, MARIAPIA;
2016-01-01
Abstract
A new protocol to synthesize size-controlled Au nanoparticles (NPs) loaded onto vertically aligned anatase TiO2 nanotubes arrays (TNTAs) prepared by electrochemical anodization is reported. Ligand-free Au NPs (<10 nm) were deposited onto anatase TNTAs supports, finely tuning the Au loading by controlling the immersion time of the support into metal vapor synthesis (MVS)-derived Au-acetone solutions. The Au/TNTAs composites were characterized by electron microscopies (SEM, (S)TEM), X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectroscopy. Their photocatalytic efficiency was evaluated in toluene degradation in air under ambient conditions without thermal or chemical postsynthetic treatments. The role of Au loadings was pointed out, obtaining a three times enhancement of the pristine anatase TNTAs activity with the best sample containing 3.3 μg Au cm-2.File | Dimensione | Formato | |
---|---|---|---|
ApplMatInterf2016.pdf
Accesso riservato
Descrizione: Articolo ACS ApplMatInt
:
Publisher’s version
Dimensione
3.79 MB
Formato
Adobe PDF
|
3.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.