We report the colloidal synthesis of ∼5.5 nm inverse spinel-type oxide Ga2FeO4 (GFO) nanocrystals (NCs) with control over the gallium and iron content. As recently theoretically predicted, some classes of spinel-type oxide materials can be intrinsically doped by means of structural disorder and/or change in stoichiometry. Here we show that, indeed, while stoichiometric Ga2FeO4 NCs are intrinsic small bandgap semiconductors, off-stoichiometric GFO NCs, produced under either Fe-rich or Ga-rich conditions, behave as degenerately doped semiconductors. As a consequence of the generation of free carriers, both Fe-rich and Ga-rich GFO NCs exhibit a localized surface plasmon resonance in the near-infrared at ∼1000 nm, as confirmed by our pump-probe absorption measurements. Noteworthy, the photoelectrochemical characterization of our GFO NCs reveal that the majority carriers are holes in Fe-rich samples, and electrons in Ga-rich ones, highlighting the bipolar nature of this material. The behavior of such off-stoichiometric NCs was explained by our density functional theory calculations as follows: the substitution of Ga(3+) by Fe(2+) ions, occurring in Fe-rich conditions, can generate free holes (p-type doping), while the replacement of Fe(2+) by Ga(3+) cations, taking place in Ga-rich samples, produces free electrons (n-type doping). These findings underscore the potential relevance of spinel-type oxides as p-type transparent conductive oxides and as plasmonic semiconductors.

Colloidal Synthesis of Bipolar Off-Stoichiometric Gallium Iron Oxide Spinel-Type Nanocrystals with Near-IR Plasmon Resonance

SIRIGU, GIANLUCA;ZAVELANI ROSSI, MARGHERITA;SCOTOGNELLA, FRANCESCO;
2017-01-01

Abstract

We report the colloidal synthesis of ∼5.5 nm inverse spinel-type oxide Ga2FeO4 (GFO) nanocrystals (NCs) with control over the gallium and iron content. As recently theoretically predicted, some classes of spinel-type oxide materials can be intrinsically doped by means of structural disorder and/or change in stoichiometry. Here we show that, indeed, while stoichiometric Ga2FeO4 NCs are intrinsic small bandgap semiconductors, off-stoichiometric GFO NCs, produced under either Fe-rich or Ga-rich conditions, behave as degenerately doped semiconductors. As a consequence of the generation of free carriers, both Fe-rich and Ga-rich GFO NCs exhibit a localized surface plasmon resonance in the near-infrared at ∼1000 nm, as confirmed by our pump-probe absorption measurements. Noteworthy, the photoelectrochemical characterization of our GFO NCs reveal that the majority carriers are holes in Fe-rich samples, and electrons in Ga-rich ones, highlighting the bipolar nature of this material. The behavior of such off-stoichiometric NCs was explained by our density functional theory calculations as follows: the substitution of Ga(3+) by Fe(2+) ions, occurring in Fe-rich conditions, can generate free holes (p-type doping), while the replacement of Fe(2+) by Ga(3+) cations, taking place in Ga-rich samples, produces free electrons (n-type doping). These findings underscore the potential relevance of spinel-type oxides as p-type transparent conductive oxides and as plasmonic semiconductors.
2017
TRANSPARENT CONDUCTING OXIDES; TUNABLE INFRARED-ABSORPTION; P-TYPE OXIDE; SEMICONDUCTOR NANOCRYSTALS; ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; TIN MONOXIDE; NANOPARTICLES; SHAPE; DYNAMICS
File in questo prodotto:
File Dimensione Formato  
2017 JACS plasmon GaFeO Urso-Manna.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1013194
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact