We present a new technique, frequency offset Raman spectroscopy (FORS), to probe Raman spectra of diffusive media in depth. The proposed methodology obtains depth sensitivity exploiting changes in optical properties (absorption and scattering) with excitation wavelengths. The approach was demonstrated experimentally on a two-layer tissue phantom and compared with the already consolidated spatially offset Raman spectroscopy (SORS) technique. FORS attains a similar enhancement of signal from deep layers as SORS, namely 2.81 against 2.62, while the combined hybrid FORS-SORS approach leads to a markedly higher 6.0 enhancement. Differences and analogies between FORS and SORS are discussed, suggesting FORS as an additional or complementary approach for probing heterogeneous media such as biological tissues in depth.
Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media
KONUGOLU VENKATA SEKAR, SANATHANA;MOSCA, SARA;FARINA, ANDREA;TARONI, PAOLA;VALENTINI, GIANLUCA;CUBEDDU, RINALDO;PIFFERI, ANTONIO GIOVANNI
2017-01-01
Abstract
We present a new technique, frequency offset Raman spectroscopy (FORS), to probe Raman spectra of diffusive media in depth. The proposed methodology obtains depth sensitivity exploiting changes in optical properties (absorption and scattering) with excitation wavelengths. The approach was demonstrated experimentally on a two-layer tissue phantom and compared with the already consolidated spatially offset Raman spectroscopy (SORS) technique. FORS attains a similar enhancement of signal from deep layers as SORS, namely 2.81 against 2.62, while the combined hybrid FORS-SORS approach leads to a markedly higher 6.0 enhancement. Differences and analogies between FORS and SORS are discussed, suggesting FORS as an additional or complementary approach for probing heterogeneous media such as biological tissues in depth.File | Dimensione | Formato | |
---|---|---|---|
Konugolu Venkata Sekar et al._2017(2).pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.5 MB
Formato
Adobe PDF
|
2.5 MB | Adobe PDF | Visualizza/Apri |
279249.pdf
accesso aperto
Descrizione: post-print
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.