The growth and oxidation of vanadium ultra-thin films deposited on Fe(001) have been investigated by combining scanning tunneling microscopy and Auger electron spectroscopy. In the early stages of growth, vanadium develops a structure pseudomorphic to the Fe(001) substrate, nucleating one-layer-thick islands. At higher coverages, the growth proceeds nearly layer-by-layer, up to a thickness of about 5 atomic layers. Upon oxygen exposure, the vanadium film gets oxidized, while no signatures of the formation of iron oxides are detected in Auger spectra. As revealed by scanning tunneling microscopy images, the oxidation increases the surface roughness, suggesting the formation of an amorphous vanadium oxide layer.

Growth and oxidation of vanadium ultra-thin buffer layers on Fe(001)

PICONE, ANDREA;GIANNOTTI, DARIO;FINAZZI, MARCO;CICCACCI, FRANCO;BRAMBILLA, ALBERTO
2016

Abstract

The growth and oxidation of vanadium ultra-thin films deposited on Fe(001) have been investigated by combining scanning tunneling microscopy and Auger electron spectroscopy. In the early stages of growth, vanadium develops a structure pseudomorphic to the Fe(001) substrate, nucleating one-layer-thick islands. At higher coverages, the growth proceeds nearly layer-by-layer, up to a thickness of about 5 atomic layers. Upon oxygen exposure, the vanadium film gets oxidized, while no signatures of the formation of iron oxides are detected in Auger spectra. As revealed by scanning tunneling microscopy images, the oxidation increases the surface roughness, suggesting the formation of an amorphous vanadium oxide layer.
Proceedings of SPIE - The International Society for Optical Engineering
9781510602533
9781510602533
Auger electron spectroscopy; Iron; Scanning Tunneling microscopy; Vanadium oxide; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
procSPIE9931_picone_Growth and Oxidation of Vanadium ultra-thin Buffer Layers on Fe(001).pdf

Accesso riservato

: Publisher’s version
Dimensione 764.85 kB
Formato Adobe PDF
764.85 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1012314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact