Within a statistical learning setting, we propose and study an iterative regularization algorithm for least squares defined by an incremental gradient method. In particular, we show that, if all other parameters are fixed a priori, the number of passes over the data (epochs) acts as a regularization parameter, and prove strong universal consistency, i.e. almost sure convergence of the risk, as well as sharp finite sample bounds for the iterates. Our results are a step towards understanding the effect of multiple epochs in stochastic gradient techniques in machine learning and rely on integrating statistical and optimization results.
Learning with incremental iterative regularization
VILLA, SILVIA
2015-01-01
Abstract
Within a statistical learning setting, we propose and study an iterative regularization algorithm for least squares defined by an incremental gradient method. In particular, we show that, if all other parameters are fixed a priori, the number of passes over the data (epochs) acts as a regularization parameter, and prove strong universal consistency, i.e. almost sure convergence of the risk, as well as sharp finite sample bounds for the iterates. Our results are a step towards understanding the effect of multiple epochs in stochastic gradient techniques in machine learning and rely on integrating statistical and optimization results.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.