The aim of this paper is to extend the theory of metric currents, developed by Ambrosio and Kirchheim, to complex spaces. We define the bidimension of a metric current on a complex space and we discuss the Cauchy-Riemann equation on a particular class of singular spaces. As another application, we investigate the Cauchy-Riemann equation on complex Banach spaces, by means of a homotopy formula. © 2012 Springer-Verlag.

Some applications of metric currents to complex analysis

MONGODI, SAMUELE
2013-01-01

Abstract

The aim of this paper is to extend the theory of metric currents, developed by Ambrosio and Kirchheim, to complex spaces. We define the bidimension of a metric current on a complex space and we discuss the Cauchy-Riemann equation on a particular class of singular spaces. As another application, we investigate the Cauchy-Riemann equation on complex Banach spaces, by means of a homotopy formula. © 2012 Springer-Verlag.
2013
Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
some_app_f.pdf

accesso aperto

Descrizione: Articolo
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 381.87 kB
Formato Adobe PDF
381.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1010763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact