This paper introduces and combines two novel techniques. Firstly, we introduce an efficient numerical method for the propagation of entire sets of initial conditions in the phase space and their associated phase space densities based on Differential Algebra (DA) techniques. Secondly, this DA density propagator is applied to a DA-enabled implementation of Semi-Analytical (SA) averaged dynamics, combining for the first time the power of the SA and DA techniques. While the DA-based method for the propagation of densities introduced in this paper is independent of the dynamical system under consideration, the particular combination of DA techniques with SA equations yields a fast and accurate method to propagate large clouds of initial conditions and their associated probability density functions very efficiently for long time. This enables the study of the long-term behavior of particles subjected to the given dynamics. To demonstrate the effectiveness of the proposed method, the evolution of a cloud of high area-to-mass objects in Medium Earth Orbit is reproduced considering the effects of solar radiation pressure, the Earth's oblateness and luni-solar perturbations. The computational efficiency is demonstrated by propagating 10.000 random samples taking snapshots of their state and density at evenly spaced intervals throughout the integration. The total time required for a propagation for 16 years in the dynamics is on the order of tens of seconds on a common desktop PC.
Density evolution of high area-to-mass objects using semi-analytical and differential algebra techniques
WITTIG, ALEXANDER NICOLAUS;COLOMBO, CAMILLA;ARMELLIN, ROBERTO
2014-01-01
Abstract
This paper introduces and combines two novel techniques. Firstly, we introduce an efficient numerical method for the propagation of entire sets of initial conditions in the phase space and their associated phase space densities based on Differential Algebra (DA) techniques. Secondly, this DA density propagator is applied to a DA-enabled implementation of Semi-Analytical (SA) averaged dynamics, combining for the first time the power of the SA and DA techniques. While the DA-based method for the propagation of densities introduced in this paper is independent of the dynamical system under consideration, the particular combination of DA techniques with SA equations yields a fast and accurate method to propagate large clouds of initial conditions and their associated probability density functions very efficiently for long time. This enables the study of the long-term behavior of particles subjected to the given dynamics. To demonstrate the effectiveness of the proposed method, the evolution of a cloud of high area-to-mass objects in Medium Earth Orbit is reproduced considering the effects of solar radiation pressure, the Earth's oblateness and luni-solar perturbations. The computational efficiency is demonstrated by propagating 10.000 random samples taking snapshots of their state and density at evenly spaced intervals throughout the integration. The total time required for a propagation for 16 years in the dynamics is on the order of tens of seconds on a common desktop PC.File | Dimensione | Formato | |
---|---|---|---|
WITTA05-14.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
681.65 kB
Formato
Adobe PDF
|
681.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.