Several techniques are being investigated as a complement to screening mammography, to reduce its false-positive rate, but results are still insufficient to draw conclusions. This initial study explores time domain diffuse optical imaging as an adjunct method to classify non-invasively malignant vs benign breast lesions. We estimated differences in tissue composition (oxy-and deoxyhemoglobin, lipid, water, collagen) and absorption properties between lesion and average healthy tissue in the same breast applying a perturbative approach to optical images collected at 7 red-near infrared wavelengths (635-1060 nm) from subjects bearing breast lesions. The Discrete AdaBoost procedure, a machine-learning algorithm, was then exploited to classify lesions based on optically derived information (either tissue composition or absorption) and risk factors obtained from patient's anamnesis (age, body mass index, familiarity, parity, use of oral contraceptives, and use of Tamoxifen). Collagen content, in particular, turned out to be the most important parameter for discrimination. Based on the initial results of this study the proposed method deserves further investigation.
Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study
TARONI, PAOLA;PAGANONI, ANNA MARIA;IEVA, FRANCESCA;PIFFERI, ANTONIO GIOVANNI;CUBEDDU, RINALDO
2017-01-01
Abstract
Several techniques are being investigated as a complement to screening mammography, to reduce its false-positive rate, but results are still insufficient to draw conclusions. This initial study explores time domain diffuse optical imaging as an adjunct method to classify non-invasively malignant vs benign breast lesions. We estimated differences in tissue composition (oxy-and deoxyhemoglobin, lipid, water, collagen) and absorption properties between lesion and average healthy tissue in the same breast applying a perturbative approach to optical images collected at 7 red-near infrared wavelengths (635-1060 nm) from subjects bearing breast lesions. The Discrete AdaBoost procedure, a machine-learning algorithm, was then exploited to classify lesions based on optically derived information (either tissue composition or absorption) and risk factors obtained from patient's anamnesis (age, body mass index, familiarity, parity, use of oral contraceptives, and use of Tamoxifen). Collagen content, in particular, turned out to be the most important parameter for discrimination. Based on the initial results of this study the proposed method deserves further investigation.File | Dimensione | Formato | |
---|---|---|---|
Taroni_SciRep2017.pdf
accesso aperto
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
718.92 kB
Formato
Adobe PDF
|
718.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.