This article proposes a continuum density approach for space debris modelling. The debris population in Low Earth Orbit (LEO) is represented through its density in semi-major axis, eccentricity and inclination. The time evolution of the density in orbital elements is modelled through the continuity equation. The perturbing effect of aerodynamic drag is included in the divergence term, while the effect of fragmentation can be seen as source term in the equation. The spatial density is then calculated from the orbital element density at each time. The proposed continuum method is used to analyse the evolution of the debris population in LEO; as initial condition the debris 2013 population is used. Then, the effect of a breakup event is superimposed onto the global population of space debris and its effect analysed; the fragment distribution caused by the breakup up of satellite DMSP-F13 is considered as test case scenario.

Spatial density approach for modelling of the space debris population

COLOMBO, CAMILLA;
2016-01-01

Abstract

This article proposes a continuum density approach for space debris modelling. The debris population in Low Earth Orbit (LEO) is represented through its density in semi-major axis, eccentricity and inclination. The time evolution of the density in orbital elements is modelled through the continuity equation. The perturbing effect of aerodynamic drag is included in the divergence term, while the effect of fragmentation can be seen as source term in the equation. The spatial density is then calculated from the orbital element density at each time. The proposed continuum method is used to analyse the evolution of the debris population in LEO; as initial condition the debris 2013 population is used. Then, the effect of a breakup event is superimposed onto the global population of space debris and its effect analysed; the fragment distribution caused by the breakup up of satellite DMSP-F13 is considered as test case scenario.
2016
Spaceflight Mechanics 2016
9780877036333
File in questo prodotto:
File Dimensione Formato  
COLOC03-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 459.37 kB
Formato Adobe PDF
459.37 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1008380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact