This paper proposes a unified framework for the investigation of constrained learning theory in reflexive Banach spaces of features via regularized empirical risk minimization. The focus is placed on Tikhonov-like regularization with totally convex functions. This broad class of regularizers provides a flexible model for various priors on the features, including, in particular, hard constraints and powers of Banach norms. In such context, the main results establish a new general form of the representer theorem and the consistency of the corresponding learning schemes under general conditions on the loss function, the geometry of the feature space, and the modulus of total convexity of the regularizer. In addition, the proposed analysis gives new insight into basic tools such as reproducing Banach spaces, feature maps, and universality. Even when specialized to Hilbert spaces, this framework yields new results that extend the state of the art.

Regularized learning schemes in feature Banach spaces

VILLA, SILVIA
2018-01-01

Abstract

This paper proposes a unified framework for the investigation of constrained learning theory in reflexive Banach spaces of features via regularized empirical risk minimization. The focus is placed on Tikhonov-like regularization with totally convex functions. This broad class of regularizers provides a flexible model for various priors on the features, including, in particular, hard constraints and powers of Banach norms. In such context, the main results establish a new general form of the representer theorem and the consistency of the corresponding learning schemes under general conditions on the loss function, the geometry of the feature space, and the modulus of total convexity of the regularizer. In addition, the proposed analysis gives new insight into basic tools such as reproducing Banach spaces, feature maps, and universality. Even when specialized to Hilbert spaces, this framework yields new results that extend the state of the art.
2018
Banach spaces; Consistency; empirical risk; feature map; regularization; representer theorem; reproducing kernel; statistical learning; totally convex function; Analysis; Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1007800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact