Upscaling of geological models for reservoir simulation is an active and important area of research. In particular, we are interested in reservoirs where the rock matrix exhibits an intricate network of fractures, which usually acts as a preferential path to the flow. Accounting for fractures' contribution in the simulation of a reservoir is of paramount importance. Here we have focused on obtaining effective parameters (e.g., transmissibility) on a 3-D computational grid on the reservoir scale, which account for the presence, at a finer spatial scale, of fractures and a network of fractures. We have essentially followed the idea illustrated in Karimi-Fard et al. (2006), yet this work has some notable aspects of innovation in the way the procedure has been implemented, and in its capability to consider rather general corner-point grids, like the ones normally used in reservoir simulations in the industry, and complex and realistic fracture networks, possibly not fully connected inside the coarse cells. In particular, novel contribution is the employment of an Embedded Discrete Fracture Model (EDFM) for computing fracture-fracture and matrix-fracture transmissibilities, with a remarkable gain in speedup. The output is in the form of transmissibility that, although obtained by considering single-phase flow, can be used for coarse-scale multiphase reservoir simulations, also via industrial software, such as Eclipse, Intersect, or GPRS. The results demonstrate the effectiveness and computational efficiency of the numerical procedure which is now ready for further testing and industrialization.

An upscaling procedure for fractured reservoirs with embedded grids

FUMAGALLI, ALESSIO;ZONCA, STEFANO;MICHELETTI, STEFANO
2016

Abstract

Upscaling of geological models for reservoir simulation is an active and important area of research. In particular, we are interested in reservoirs where the rock matrix exhibits an intricate network of fractures, which usually acts as a preferential path to the flow. Accounting for fractures' contribution in the simulation of a reservoir is of paramount importance. Here we have focused on obtaining effective parameters (e.g., transmissibility) on a 3-D computational grid on the reservoir scale, which account for the presence, at a finer spatial scale, of fractures and a network of fractures. We have essentially followed the idea illustrated in Karimi-Fard et al. (2006), yet this work has some notable aspects of innovation in the way the procedure has been implemented, and in its capability to consider rather general corner-point grids, like the ones normally used in reservoir simulations in the industry, and complex and realistic fracture networks, possibly not fully connected inside the coarse cells. In particular, novel contribution is the employment of an Embedded Discrete Fracture Model (EDFM) for computing fracture-fracture and matrix-fracture transmissibilities, with a remarkable gain in speedup. The output is in the form of transmissibility that, although obtained by considering single-phase flow, can be used for coarse-scale multiphase reservoir simulations, also via industrial software, such as Eclipse, Intersect, or GPRS. The results demonstrate the effectiveness and computational efficiency of the numerical procedure which is now ready for further testing and industrialization.
EDFM; fractured reservoirs; multiple subregions; upscaling; Water Science and Technology
File in questo prodotto:
File Dimensione Formato  
11311-1007560_Micheletti.pdf

accesso aperto

: Publisher’s version
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1007560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 45
social impact