The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [32], [33], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem. In this paper we prove the quaternionic spectral theorem for unitary operators using the S-spectrum. In the case of quaternionic matrices, the S-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of S-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for n-tuples of not necessarily commuting operators, to define and study a noncommutative versions of the Riesz-Dunford functional calculus. The main tools to prove the spectral theorem for unitary operators are the quaternionic version of Herglotz’s theorem, which relies on the new notion of a q-positive measure, and quaternionic spectral measures, which are related to the quaternionic Riesz projectors defined by means of the S-resolvent operator and the S-spectrum. The results in this paper restore the analogy with the complex case in which the classical notion of spectrum appears in the Riesz-Dunford functional calculus as well as in the spectral theorem.
The Spectral Theorem for Unitary Operators Based on the S-Spectrum
COLOMBO, FABRIZIO;SABADINI, IRENE MARIA
2016-01-01
Abstract
The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [32], [33], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem. In this paper we prove the quaternionic spectral theorem for unitary operators using the S-spectrum. In the case of quaternionic matrices, the S-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of S-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for n-tuples of not necessarily commuting operators, to define and study a noncommutative versions of the Riesz-Dunford functional calculus. The main tools to prove the spectral theorem for unitary operators are the quaternionic version of Herglotz’s theorem, which relies on the new notion of a q-positive measure, and quaternionic spectral measures, which are related to the quaternionic Riesz projectors defined by means of the S-resolvent operator and the S-spectrum. The results in this paper restore the analogy with the complex case in which the classical notion of spectrum appears in the Riesz-Dunford functional calculus as well as in the spectral theorem.File | Dimensione | Formato | |
---|---|---|---|
11311-1007250_Colombo.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
203.5 kB
Formato
Adobe PDF
|
203.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.