Closed-cell aluminum foams belong to the class of cellular solid materials, which have wide application in automotive and aerospace industries. Improving the mechanical properties and modifying the manufacturing process of such materials is always on demand. It has been shown that the mechanical properties of cellular materials are highly depending on geometrical arrangement, mechanical properties of solid constituents and the relative density of these materials. In this study, using a manufacturing process of foaming by expansion of a blowing agent, we prepared two types of closed-cell aluminum foams with isotropic distribution of cells along length and foams with gradient of pores along its length. We hypothesized that such variation of pores can induce microstructural directionality along the length of foam samples and improve their mechanical properties. For this aim, we studied the microstructural properties by micro-CT imaging and found their relation to macroscopic mechanical properties of foam samples by conducting monotonic compression tests. We compared these results with the one of the bovine femur trabecular bone as they show a dominant microstructural anisotropy due to alignment with the maximum strength direction in body. We also conducted numerical analyses and validated them for the elastic part based on our experimental work. Our results showed that gradient variation in porosity in closed-cell aluminum foams have a minor effect on their macroscopic mechanical properties. Although using such materials in sandwich panel structures, the strength of the material slightly increased. In addition, parameters of a power law model for the description of mechanical properties of foam sample and their relative density and properties of the solid compartment were characterized. The presented results are considered as a preliminary study for improvement of mechanical properties of closed-cell aluminum foams.

Investigation of the Effect of Internal Pores Distribution on the Elastic Properties of Closed-Cell Aluminum Foam: A Comparison with Cancellous Bone

MIRZAALI MAZANDARANI, MOHAMMADJAVAD;LIBONATI, FLAVIA;VENA, PASQUALE;MUSSI, VALERIO;VERGANI, LAURA MARIA;STRANO, MATTEO
2016

Abstract

Closed-cell aluminum foams belong to the class of cellular solid materials, which have wide application in automotive and aerospace industries. Improving the mechanical properties and modifying the manufacturing process of such materials is always on demand. It has been shown that the mechanical properties of cellular materials are highly depending on geometrical arrangement, mechanical properties of solid constituents and the relative density of these materials. In this study, using a manufacturing process of foaming by expansion of a blowing agent, we prepared two types of closed-cell aluminum foams with isotropic distribution of cells along length and foams with gradient of pores along its length. We hypothesized that such variation of pores can induce microstructural directionality along the length of foam samples and improve their mechanical properties. For this aim, we studied the microstructural properties by micro-CT imaging and found their relation to macroscopic mechanical properties of foam samples by conducting monotonic compression tests. We compared these results with the one of the bovine femur trabecular bone as they show a dominant microstructural anisotropy due to alignment with the maximum strength direction in body. We also conducted numerical analyses and validated them for the elastic part based on our experimental work. Our results showed that gradient variation in porosity in closed-cell aluminum foams have a minor effect on their macroscopic mechanical properties. Although using such materials in sandwich panel structures, the strength of the material slightly increased. In addition, parameters of a power law model for the description of mechanical properties of foam sample and their relative density and properties of the solid compartment were characterized. The presented results are considered as a preliminary study for improvement of mechanical properties of closed-cell aluminum foams.
Proceedings of the 21st European Conference on Fracture
Closed-cell Aluminum Foam, Bio-inspiration, Microstructural Anisotropy, Finite Element Modeling, Computed Tomography
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S245232161630172X-main.pdf

accesso aperto

Descrizione: articolo
: Publisher’s version
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1005654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact