We propose and analyze the convergence of a novel stochastic algorithm for monotone inclusions that are sum of a maximal monotone operator and a single-valued cocoercive operator. The algorithm we propose is a natural stochastic extension of the classical forward–backward method. We provide a non-asymptotic error analysis in expectation for the strongly monotone case, as well as almost sure convergence under weaker assumptions. For minimization problems, we recover rates matching those obtained by stochastic extensions of the so-called accelerated methods. Stochastic quasi-Fejér’s sequences are a key technical tool to prove almost sure convergence.

Stochastic Forward–Backward Splitting for Monotone Inclusions

VILLA, SILVIA;
2016-01-01

Abstract

We propose and analyze the convergence of a novel stochastic algorithm for monotone inclusions that are sum of a maximal monotone operator and a single-valued cocoercive operator. The algorithm we propose is a natural stochastic extension of the classical forward–backward method. We provide a non-asymptotic error analysis in expectation for the strongly monotone case, as well as almost sure convergence under weaker assumptions. For minimization problems, we recover rates matching those obtained by stochastic extensions of the so-called accelerated methods. Stochastic quasi-Fejér’s sequences are a key technical tool to prove almost sure convergence.
2016
Forward–backward splitting algorithm; Monotone inclusions; Stochastic Fejér sequences; Stochastic first-order methods; Applied Mathematics; Control and Optimization; Management Science and Operations Research
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1005510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 13
social impact