In the present work, Kesterite-Cu2ZnSnS4 (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose results matched up with the literatures.

CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

KHALIL, MD IBRAHIM;LUCOTTI, ANDREA;MAGAGNIN, LUCA
2016-01-01

Abstract

In the present work, Kesterite-Cu2ZnSnS4 (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose results matched up with the literatures.
2016
Bilayer precursor, CZTS, Kesterite, Photoluminescence, Sulfurization
File in questo prodotto:
File Dimensione Formato  
Applied Surface Science 2016.pdf

Accesso riservato

Descrizione: Articolo ASS
: Publisher’s version
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri
11311-1005017_Magagnin.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1005017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 44
social impact