The generalized bin packing problem (GBPP) is a novel packing problem arising in many transportation and logistic settings, characterized by multiple items and bins attributes and the presence of both compulsory and non-compulsory items. In this paper, we study the computational complexity and the approximability of the GBPP. We prove that the GBPP cannot be approximated by any constant, unless P = NP. We also study the particular case of a single bin type and show that when an unlimited number of bins is available, the GBPP can be reduced to the bin packing with rejection (BPR) problem, which is approximable. We also prove that the GBPP satisfies Bellman’s optimality principle and, exploiting this result, we develop a dynamic programming solution approach. Finally, we study the behavior of standard and widespread heuristics such as the first fit, best fit, first fit decreasing, and best fit decreasing.We show that while they successfully approximate previous versions of bin packing problems, they fail to approximate the GBPP.

On the generalized bin packing problem

BRUGLIERI, MAURIZIO
2017-01-01

Abstract

The generalized bin packing problem (GBPP) is a novel packing problem arising in many transportation and logistic settings, characterized by multiple items and bins attributes and the presence of both compulsory and non-compulsory items. In this paper, we study the computational complexity and the approximability of the GBPP. We prove that the GBPP cannot be approximated by any constant, unless P = NP. We also study the particular case of a single bin type and show that when an unlimited number of bins is available, the GBPP can be reduced to the bin packing with rejection (BPR) problem, which is approximable. We also prove that the GBPP satisfies Bellman’s optimality principle and, exploiting this result, we develop a dynamic programming solution approach. Finally, we study the behavior of standard and widespread heuristics such as the first fit, best fit, first fit decreasing, and best fit decreasing.We show that while they successfully approximate previous versions of bin packing problems, they fail to approximate the GBPP.
2017
bin packing problem, variable cost and size bin packing problem, approximation; Bellman’s optimality principle, dynamic programming
File in questo prodotto:
File Dimensione Formato  
GBPP_Baldi_Bruglieri_submitted_version.pdf

accesso aperto

Descrizione: Versione pre-referaggio dell'articolo
: Pre-Print (o Pre-Refereeing)
Dimensione 146.56 kB
Formato Adobe PDF
146.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1004183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact