To achieve reliable system intelligence outstanding results, current computational system modeling and simulation community has to face and to solve two orders of modeling limitations at least. As a solution, we propose an exponential, prespatial arithmetic scheme ("all-powerful scheme") by computational information conservation theory (CICT) to overcome the Information Double-Bind (IDB) problem and to thrive on both deterministic noise (DN) and random noise (RN) to develop powerful cognitive computational framework for deep learning, towards deep thinking applications. In a previous paper we showed and discussed how this new CICT famework can help us to develop even competitive advanced quantum cognitive computational systems. An operative example is presented. This paper is a relevant contribution towards an effective and convenient "Science 2.0" universal computational framework to develop deeper learning and deep thinking system and application at your fingertips and beyond.
New CICT Framework for Deep Learning and Deep Thinking Application
FIORINI, RODOLFO
2016-01-01
Abstract
To achieve reliable system intelligence outstanding results, current computational system modeling and simulation community has to face and to solve two orders of modeling limitations at least. As a solution, we propose an exponential, prespatial arithmetic scheme ("all-powerful scheme") by computational information conservation theory (CICT) to overcome the Information Double-Bind (IDB) problem and to thrive on both deterministic noise (DN) and random noise (RN) to develop powerful cognitive computational framework for deep learning, towards deep thinking applications. In a previous paper we showed and discussed how this new CICT famework can help us to develop even competitive advanced quantum cognitive computational systems. An operative example is presented. This paper is a relevant contribution towards an effective and convenient "Science 2.0" universal computational framework to develop deeper learning and deep thinking system and application at your fingertips and beyond.File | Dimensione | Formato | |
---|---|---|---|
91772101-a7bd-46d1-bc0f-9ca989095a83.pdf
Accesso riservato
Descrizione: New CICT Framework for Deep Learning and Deep Thinking Application
:
Publisher’s version
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.