Roads are essential for rural development, but road construction can also increase hillslope erosion rates, disconnect ecosystems, and disrupt social structures. Moreover, we identify a feedback between road-induced landslides and reservoirs: Dam construction commonly requires road construction for access, and the new roads themselves can accelerate rural development, which induces further road construction. Poorly sited or constructed roads on steep slopes increase risks of landslides, which increase sediment loads, and thus increase the rate of sediment accumulation in downstream reservoirs, which can damage turbines and shorten reservoir life. However, landslide-generated sediment reaching rivers downstream of dams could compensate for reduced sediment loads from sediment trapping in reservoirs. We quantified the combined effects ofroad and reservoir development on river sediment transport and reservoir sedimentation rates in the Chinese Lancang Basin (165,000 km2). We mapped landslides along all highways, national roads, and provincial roads (total length 4845 km), as well as on slopes opposite of roads (as control sites to estimate ambient landslide rates). We determined the relative increase in landslide risks due to road construction, estimated slide volumes, and classified landslide connectivity to the fluvial system. From this inventory, we quantified the spatial and temporal distribution of road-induced landslides and estimated sediment inputs to the Lancang River. Our findings indicate that road-induced landslides significantly exceed naturally occurring landslides both in frequency and area, and are changing the regional sediment budget, though overall, sediment transport in the Lancang is reduced due to the larger alteration- sediment trapping in reservoirs.Our results highlight links between resource management and geomorphic change, and the need to consider human impacts on regional scales and from interacting processes.

Estimating the combined effects of road-induced landslides and reservoir sediment trapping on the regional sediment budget in the Lancang Basin.

SCHMITT, RAFAEL JAN PABLO;
2016-01-01

Abstract

Roads are essential for rural development, but road construction can also increase hillslope erosion rates, disconnect ecosystems, and disrupt social structures. Moreover, we identify a feedback between road-induced landslides and reservoirs: Dam construction commonly requires road construction for access, and the new roads themselves can accelerate rural development, which induces further road construction. Poorly sited or constructed roads on steep slopes increase risks of landslides, which increase sediment loads, and thus increase the rate of sediment accumulation in downstream reservoirs, which can damage turbines and shorten reservoir life. However, landslide-generated sediment reaching rivers downstream of dams could compensate for reduced sediment loads from sediment trapping in reservoirs. We quantified the combined effects ofroad and reservoir development on river sediment transport and reservoir sedimentation rates in the Chinese Lancang Basin (165,000 km2). We mapped landslides along all highways, national roads, and provincial roads (total length 4845 km), as well as on slopes opposite of roads (as control sites to estimate ambient landslide rates). We determined the relative increase in landslide risks due to road construction, estimated slide volumes, and classified landslide connectivity to the fluvial system. From this inventory, we quantified the spatial and temporal distribution of road-induced landslides and estimated sediment inputs to the Lancang River. Our findings indicate that road-induced landslides significantly exceed naturally occurring landslides both in frequency and area, and are changing the regional sediment budget, though overall, sediment transport in the Lancang is reduced due to the larger alteration- sediment trapping in reservoirs.Our results highlight links between resource management and geomorphic change, and the need to consider human impacts on regional scales and from interacting processes.
2016
Fall meeting of the American Geophysical Union: conference abstracts
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1003418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact